当前位置: X-MOL 学术Nanoscale › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DNA nanostructures directed by RNA clamps
Nanoscale ( IF 6.7 ) Pub Date : 2021-11-26 , DOI: 10.1039/d1nr03919a
Jiazhen Lyu 1 , Mei Yang 1 , Chong Zhang 2 , Yongbo Luo 2 , Tong Qin 1 , Zhaoming Su 2 , Zhen Huang 1, 3
Affiliation  

DNA chains can be folded rationally by using DNA staples, and the programmed structures are of great potential in nanomaterial studies. However, due to the short DNA staples forming duplexes and displaying limitations in structural diversity and stability, the folded DNA nanostructures are usually generated with structural mis-formations, low yields and poor efficiencies, which can restrict their folding patterns and applications. To overcome these problems, we set out to use RNA as a clamp to form polygons, and herein demonstrated the ability to use a structural RNA—but not its corresponding DNA—to fold DNA chains into nanostructures with high efficiency (up to a 95.1% yield). Furthermore, we discovered that the 2′-methylated version of the RNA can, compared to the unmodified RNA, even more efficiently fold DNA chains (up to a 98.5% yield). Interestingly, the RNA clamp can fold DNA scaffolds with one, two or four folding units into the same square shape. Furthermore, the RNA can direct the DNA chains with three, four and five folding units into triangular, square and pentagonal nano-shapes, respectively. In addition, we confirmed their enlarged nano-shapes by performing electron microscopy (EM) imaging. These formed nanostructures revealed the potential cooperation between the DNA scaffold and RNA clamp. Moreover, our research demonstrated a novel strategy, involving using RNA clamps displaying structural diversity and duplex stability, for folding DNA into diverse nanostructures.

中文翻译:

由 RNA 夹子引导的 DNA 纳米结构

DNA 链可以通过使用 DNA 订书钉进行合理折叠,程序化的结构在纳米材料研究中具有巨大的潜力。然而,由于形成双链体的短 DNA 订书钉在结构多样性和稳定性方面表现出限制,折叠的 DNA 纳米结构通常具有结构错误、产量低和效率低的特点,这会限制它们的折叠模式和应用。为了克服这些问题,我们开始使用 RNA 作为夹子来形成多边形,并在此展示了使用结构 RNA(而不是其相应的 DNA)将 DNA 链高效折叠成纳米结构的能力(高达 95.1%屈服)。此外,我们发现与未修饰的 RNA 相比,2'-甲基化版本的 RNA 可以更有效地折叠 DNA 链(高达 98.5% 的产率)。有趣的是,RNA 夹可以将带有一个、两个或四个折叠单元的 DNA 支架折叠成相同的正方形。此外,RNA 可以将具有三个、四个和五个折叠单元的 DNA 链分别引导成三角形、正方形和五边形纳米形状。此外,我们通过执行电子显微镜 (EM) 成像确认了它们放大的纳米形状。这些形成的纳米结构揭示了 DNA 支架和 RNA 夹之间的潜在合作。此外,我们的研究展示了一种新策略,包括使用显示结构多样性和双链稳定性的 RNA 夹子,将 DNA 折叠成不同的纳米结构。四个和五个折叠单元分别为三角形、正方形和五边形纳米形状。此外,我们通过执行电子显微镜 (EM) 成像确认了它们放大的纳米形状。这些形成的纳米结构揭示了 DNA 支架和 RNA 夹之间的潜在合作。此外,我们的研究展示了一种新策略,包括使用显示结构多样性和双链稳定性的 RNA 夹子,将 DNA 折叠成不同的纳米结构。四个和五个折叠单元分别为三角形、正方形和五边形纳米形状。此外,我们通过执行电子显微镜 (EM) 成像确认了它们放大的纳米形状。这些形成的纳米结构揭示了 DNA 支架和 RNA 夹之间的潜在合作。此外,我们的研究展示了一种新策略,包括使用显示结构多样性和双链稳定性的 RNA 夹子,将 DNA 折叠成不同的纳米结构。
更新日期:2021-11-26
down
wechat
bug