当前位置: X-MOL 学术IEEE Trans. Geosci. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Motion-Compensated Steering: Enhanced Azimuthal Resolution for Polarimetric Rotating Phased Array Radar
IEEE Transactions on Geoscience and Remote Sensing ( IF 8.2 ) Pub Date : 2021-02-19 , DOI: 10.1109/tgrs.2021.3055033
David Schvartzman , Sebastian M. Torres , Tian-You Yu

The rotating phased array radar (RPAR) is an architecture that could improve the capabilities of the current weather surveillance radar—1988 Doppler (WSR-88D) operational network and is likely to be more affordable than other candidate PAR architectures. However, continuous antenna rotation coupled with the need to perform coherent processing of multiple samples results in a degraded effective beamwidth (referred to as beam smearing) compared to architectures based on stationary antennas. The RPAR’s beam agility can be exploited to reduce beam-smearing effects by electronically steering the beam on a pulse-to-pulse basis within the coherent processing interval. That is, the motion of the antenna can be compensated to maintain the beam pointed at the center of resolution volume being sampled. This motion-compensated steering (MCS) could reduce the effects of antenna motion and lead to a reduction in the effective beamwidth. The purpose of this article is to present and demonstrate the MCS technique for a dual-polarization RPAR system. In this article, we provide a formulation for the MCS technique, simulations to quantify its performance in mitigating beam-smearing effects, its impacts on the quality of dual-polarization radar-variable estimates, and a practical implementation on the National Severe Storms Laboratory’s Advanced Technology Demonstrator (ATD) system. Experiments were carried out using two alternative concepts of operations (CONOPS) described in this article. Results show that a system designed with sufficient pointing accuracy can be operated as an RPAR using MCS, and the impact on radar-variable estimates is comparable to that obtained when operating the same system as a stationary PAR.

中文翻译:

运动补偿转向:增强偏振旋转相控阵雷达的方位分辨率

旋转相控阵雷达 (RPAR) 是一种架构,可以提高当前天气监视雷达——1988 多普勒 (WSR-88D) 操作网络的能力,并且可能比其他候选 PAR 架构更实惠。然而,与基于固定天线的架构相比,连续天线旋转加上需要对多个样本执行相干处理会导致有效波束宽度(称为波束拖尾)降低。通过在相干处理间隔内以脉冲到脉冲的方式对光束进行电子控制,可以利用 RPAR 的光束敏捷性来减少光束拖尾效应。也就是说,可以补偿天线的运动以保持波束指向被采样的分辨率体积的中心。这种运动补偿转向 (MCS) 可以减少天线运动的影响并导致有效波束宽度的减少。本文的目的是展示和演示双极化 RPAR 系统的 MCS 技术。在本文中,我们提供了 MCS 技术的公式、量化其在减轻波束拖尾效应方面的性能的模拟、其对双极化雷达变量估计质量的影响,以及在国家强风暴实验室先进技术演示(ATD)系统。使用本文中描述的两种替代操作概念 (CONOPS) 进行了实验。结果表明,设计具有足够指向精度的系统可以作为 RPAR 使用 MCS,
更新日期:2021-02-19
down
wechat
bug