当前位置: X-MOL 学术Nat. Rev. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxide spin-orbitronics: spin–charge interconversion and topological spin textures
Nature Reviews Materials ( IF 79.8 ) Pub Date : 2021-11-26 , DOI: 10.1038/s41578-021-00395-9
Felix Trier 1, 2 , Manuel Bibes 1 , Paul Noël 3, 4 , Jean-Philippe Attané 3 , Laurent Vila 3 , Joo-Von Kim 5
Affiliation  

Oxide materials possess a vast range of functional properties, ranging from superconductivity to multiferroicity, that stem from the interplay between the lattice, charge, spin and orbital degrees of freedom, and electron correlations often play an important role in defining such properties. Historically, spin–orbit coupling was rarely a dominant energy scale in oxides. However, it recently became the focus of intense interest and was exploited to realize various exotic phenomena connected with real-space and reciprocal-space topology that may be harnessed in spintronics applications. In this Review, we survey the recent advances in the new field of oxide spin-orbitronics, with a special focus on spin–charge interconversion through the direct and inverse spin Hall and Edelstein effects, and on the generation and observation of topological spin textures, such as skyrmions. We also highlight the control of spin–orbit-driven effects by ferroelectricity and discuss the future perspectives for the field.



中文翻译:

氧化物自旋轨道电子学:自旋电荷相互转换和拓扑自旋纹理

氧化物材料具有广泛的功能特性,从超导性到多铁性,源于晶格、电荷、自旋和轨道自由度之间的相互作用,而电子相关性通常在定义这些特性中发挥重要作用。从历史上看,自旋轨道耦合很少是氧化物中的主要能量尺度。然而,它最近成为人们强烈关注的焦点,并被用来实现与可在自旋电子学应用中利用的实空间和互易空间拓扑相关的各种奇异现象。在这篇综述中,我们调查了氧化物自旋轨道电子学新领域的最新进展,特别关注通过正反自旋霍尔效应和埃德尔斯坦效应的自旋电荷相互转换,以及拓扑自旋纹理的生成和观察,例如斯格明子。我们还强调了铁电对自旋轨道驱动效应的控制,并讨论了该领域的未来前景。

更新日期:2021-11-26
down
wechat
bug