当前位置: X-MOL 学术Proc. Inst. Mech. Eng. E J. Process Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The electrical magnetohydrodynamic (MHD) and shape factor impacts in a mixture fluid suspended by hybrid nanoparticles between non-parallel plates
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ( IF 2.3 ) Pub Date : 2021-11-25 , DOI: 10.1177/09544089211057971
Abdelkader Khentout 1 , Mohamed Kezzar 2 , Mohamed R. Sari 3 , Tabet Ismail 4 , Mustapha S. Tich Tich 4 , Sara Boutelba 4 , Mohamed R. Eid 5, 6
Affiliation  

Abstract

In this research work, we introduce the influences of the shape of nanoparticles and joule heating in the hydromagnetic flow of hybrid nanofluids between non-parallel plates. A mixture base fluid (H2O (50%)-C2H6O2 (50%)), a hybrid nanofluid containing hybrid nanoparticles (graphene oxide-molybdenum disulfide, GO-MoS2) as nanoparticles, is considered. The non-linear governing equations are reduced into ordinary-differential equations (ODEs) by similarity transformations. The non-linear ordinary-differential equation (ODE) is solved numerically utilizing 4th–5th order Runge-Kutta-Fehlberg (RKF-45) with a shooting method and analytically using the homotopy analysis method (HAM). The effect of the rarefaction parameter, Reynolds number, channel angle, Hartmann number, electric field parameter, and the shape of nanoparticles on fluid velocity and skin friction are discussed and presented in a graphical form. Also, the theoretical results and the effectiveness of the homotopy analysis method (HAM) are confirmed by numerical tests and presented graphically coupled with detailed discussions.



中文翻译:

电磁流体动力学 (MHD) 和形状因子对混合流体的影响,混合流体由非平行板之间的混合纳米粒子悬浮

摘要

在这项研究工作中,我们介绍了纳米颗粒形状和焦耳热对非平行板之间混合纳米流体的水磁流的影响。考虑混合基础流体(H 2 O (50%)-C 2 H 6 O 2 (50%)),一种包含混合纳米颗粒(氧化石墨烯-二硫化钼,GO-MoS 2)作为纳米颗粒的混合纳米流体。通过相似变换将非线性控制方程简化为常微分方程 (ODE)。非线性常微分方程 (ODE) 使用 4 th –5 th数值求解使用射击方法订购 Runge-Kutta-Fehlberg (RKF-45),并使用同伦分析方法 (HAM) 进行分析。讨论了稀疏参数、雷诺数、通道角、哈特曼数、电场参数和纳米颗粒形状对流体速度和皮肤摩擦的影响,并以图形形式呈现。此外,理论结果和同伦分析方法 (HAM) 的有效性通过数值测试得到证实,并以图形方式呈现并进行详细讨论。

更新日期:2021-11-25
down
wechat
bug