当前位置: X-MOL 学术J. Loss Prev. Process. Ind. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Vapor cloud explosions in various types of confined environments: CFD analysis and model validation
Journal of Loss Prevention in the Process Industries ( IF 3.6 ) Pub Date : 2021-11-25 , DOI: 10.1016/j.jlp.2021.104681
G. Momferatos 1 , S.G. Giannissi 1 , I.C. Tolias 1 , A.G. Venetsanos 1 , A. Vlyssides 2 , N. Markatos 2
Affiliation  

In the current work, three different types of vapor cloud explosion experiments are simulated. The purpose of the simulations is twofold: firstly, to evaluate a recently developed CFD model and secondly to analyze the involved phenomena with the help of the simulation results. The proposed model, which has been implemented in the ADREA-HF CFD code, utilizes the RANS method using the Kato and Launder modification of k-e model. Combustion is modelled by taking into account the main mechanisms that contribute to the phenomenon such as chemistry, turbulence generated from the obstacles in front of the flame front, flame instabilities and turbulence generated by the flame-front itself. The CFD model is evaluated against different types of explosions in different geometries and with various fuels. Uniform premixed fuel-air mixture is considered in all cases. A large scale vented deflagration experiment in a 10 m length enclosure is firstly simulated using methane as fuel. The external explosion effect is apparent in this case. Then, a hydrogen deflagration experiment in a 78.5 m tunnel is simulated. Four mock-up cars are placed in the premixed region. Finally, propane and methane explosions inside a 1.5 m tube with obstacles and intense turbulence are simulated. Two different obstacle configurations are studied. The model predicts the overpressure values satisfactorily in all the examined cases. The factors that contribute to the pressure rise in each stage of each experiment are discussed based on the simulation results.



中文翻译:

各种受限环境中的蒸汽云爆炸:CFD 分析和模型验证

在目前的工作中,模拟了三种不同类型的蒸汽云爆炸实验。模拟的目的有两个:首先,评估最近开发的 CFD 模型,其次在模拟结果的帮助下分析所涉及的现象。已在 ADREA-HF CFD 代码中实现的建议模型利用 RANS 方法使用 ke 模型的 Kato 和 Launder 修改。燃烧是通过考虑导致现象的主要机制来建模的,例如化学、火焰锋前面的障碍物产生的湍流、火焰不稳定性和火焰锋本身产生的湍流。CFD 模型针对不同几何形状和各种燃料的不同类型的爆炸进行评估。在所有情况下都考虑均匀的预混燃料-空气混合物。首次使用甲烷作为燃料模拟了在 10 m 长的外壳中进行的大规模通风爆燃实验。在这种情况下,外部爆炸效果很明显。然后,模拟了 78.5 m 隧道中的氢爆燃实验。四辆模型车被放置在预混区域。最后,模拟了具有障碍物和强烈湍流的 1.5 m 管内的丙烷和甲烷爆炸。研究了两种不同的障碍物配置。该模型在所有检查的情况下都令人满意地预测了超压值。根据模拟结果讨论了导致每个实验每个阶段压力升高的因素。在这种情况下,外部爆炸效果很明显。然后,模拟了 78.5 m 隧道中的氢爆燃实验。四辆模型车被放置在预混区域。最后,模拟了具有障碍物和强烈湍流的 1.5 m 管内的丙烷和甲烷爆炸。研究了两种不同的障碍物配置。该模型在所有检查的情况下都令人满意地预测了超压值。根据模拟结果讨论了导致每个实验每个阶段压力升高的因素。在这种情况下,外部爆炸效果很明显。然后,模拟了 78.5 m 隧道中的氢爆燃实验。四辆模型车被放置在预混区域。最后,模拟了具有障碍物和强烈湍流的 1.5 m 管内的丙烷和甲烷爆炸。研究了两种不同的障碍物配置。该模型在所有检查的情况下都令人满意地预测了超压值。根据模拟结果讨论了导致每个实验每个阶段压力升高的因素。研究了两种不同的障碍物配置。该模型在所有检查的情况下都令人满意地预测了超压值。根据模拟结果讨论了导致每个实验每个阶段压力升高的因素。研究了两种不同的障碍物配置。该模型在所有检查的情况下都令人满意地预测了超压值。根据模拟结果讨论了导致每个实验每个阶段压力升高的因素。

更新日期:2021-12-15
down
wechat
bug