当前位置: X-MOL 学术Earth Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Establishing consistent equations of state for solid noble gases: Implication for partitioning behaviors of noble gases in the lower mantle
Earth-Science Reviews ( IF 10.8 ) Pub Date : 2021-11-24 , DOI: 10.1016/j.earscirev.2021.103872
Xi Zhu 1 , Yu Ye 1 , Joseph R. Smyth 2 , Dan Liu 1 , Yunfan Miao 1
Affiliation  

Noble gases (He, Ne, Ar, Kr and Xe) are important geochemical tracers for exploring the volatile cycles in the whole Earth system through geological time. Noble gases are dissolved more in bridgmanite and ferropericlase, the dominant minerals of the lower mantle, than in the minerals of the upper mantle. In order to understand the incorporation mechanism of noble gases into the crystal structures, it is necessary to derive atomic radii of the noble gases at pressure-temperature conditions of the lower mantle, which depend on accurate P-V-T equations of state (EOSs). On the other hand, extensive P-V EOSs have been reported on noble gases, on the basis of isothermal compressional measurements in the diamond anvil cell (DAC). However, severe discrepancies exist among the reported EOSs for these phases with pressure differences up to 30%. We converted all the pressures to be consistent with the inter-calibrated MgO-Au-Pt-ruby pressure scales from Ye et al. (2018) High Press. Res., and found that for each noble gas, different measurements agree well with each other with pressure discrepancies generally within ±5 GPa. Hence, the discrepancies of EOSs mainly come from inconsistencies among various pressure scales. After pressure conversion, consistent P-V-T EOSs were constructed among noble gases. In addition, we also established modified P-V EOSs for these phases, which are independent of selection of the volumes (V0) or bulk moduli (KT0 and K0) at ambient pressure. For each phase, good agreement was observed between the normal and modified EOSs, with discrepancy within the measurement uncertainties throughout the experimental pressure range. The oxygen site Young's moduli are also given for bridgmanite and ferropericlase, and then established lattice strain models at the P-T conditions in the lower mantle. Consequently, solubilities of Ne, Ar, Kr, and Xe can be constrained at various depths in the lower mantle, which are crucial to the noble gas fractionation during formation of the lower mantle from a magma ocean in the Archean. Variation of the primordial stable isotope ratios (130Xe/36Ar and 20Ne/36Ar) between magma ocean and present OIBs are generally consistent with the solubility ratios of Ne: Ar: Xe from this model. On the other hand, our model also supports much more Ar and Kr being stored in the lower mantle than Xe, which could be associated with the depletion of Xe in the present atmosphere, as compared with the abundances in chondrites. The lower mantle is therefore an important reservoir for noble gases, and has not yet been completely degassed.



中文翻译:

建立一致的固体惰性气体状态方程:对下地幔中惰性气体分配行为的影响

稀有气体(He、Ne、Ar、Kr 和 Xe)是重要的地球化学示踪剂,可用于探索整个地球系统在地质时间中的挥发性循环。与上地幔的矿物相比,稀有气体更多地溶解在下地幔的主要矿物桥锰矿和铁方镁石中。为了理解稀有气体进入晶体结构的机制,有必要在下地幔的压力-温度条件下推导出稀有气体的原子半径,这取决于精确的PVT状态方程 (EOS)。另一方面,广泛的光伏根据金刚石砧座 (DAC) 中的等温压缩测量结果,已报道了稀有气体的 EOS。然而,这些阶段报告的 EOS 之间存在严重差异,压差高达 30%。我们将所有压力转换为与 Ye 等人的相互校准的 MgO-Au-Pt-ruby 压力标度一致。(2018)高压。水库 ,并发现对于每种惰性气体,不同的测量结果彼此吻合良好,压力差异通常在 ±5 GPa 以内。因此,EOS 的差异主要来自于各种压力尺度之间的不一致。压力转换后,在惰性气体中构建了一致的PVT EOS。此外,我们还建立了改良PV这些相的 EOS,与环境压力下的体积 ( V 0 ) 或体积模量 ( K T 0K 0 ' )的选择无关。对于每个阶段,在正常和修改后的 EOS 之间观察到良好的一致性,在整个实验压力范围内的测量不确定度内存在差异。还给出了桥锰矿和铁方镁石的氧位杨氏模量,然后建立了P - T处的晶格应变模型下地幔的条件。因此,Ne、Ar、Kr 和 Xe 的溶解度可以限制在下地幔的不同深度,这对于太古代岩浆海洋形成下地幔过程中的惰性气体分馏至关重要。原始稳定同位素比率的变化(130 Xe/ 36 Ar 和20 Ne/ 36Ar) 在岩浆海洋和现在的 OIBs 之间通常与该模型中 Ne:Ar:Xe 的溶解度比一致。另一方面,与球粒陨石中的丰度相比,我们的模型还支持在下地幔中储存的 Ar 和 Kr 比 Xe 多得多,这可能与当前大气中 Xe 的消耗有关。因此,下地幔是稀有气体的重要储层,尚未完全脱气。

更新日期:2021-12-11
down
wechat
bug