当前位置: X-MOL 学术Appl. Catal. B Environ. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accelerated N2 Reduction Kinetics in Hybrid Interfaces of NbTiO4 and Nitrogen-doped Carbon Nanorod via Synergistic Electronic Coupling Effect
Applied Catalysis B: Environment and Energy ( IF 20.2 ) Pub Date : 2021-11-20 , DOI: 10.1016/j.apcatb.2021.120938
David Kumar Yesudoss 1 , Hoje Chun 2 , Byungchan Han 2 , Sangaraju Shanmugam 1
Affiliation  

Electrochemical ammonia synthesis through the atmospheric nitrogen reduction reaction (NRR) is a promising method for sustainable fertilizer and carbon-free hydrogen energy carriers. The inevitable selectivity gap against hydrogen evolution reaction and inert nitrogen (N2) hinders the device-level usage of nitrogen cathodes. In this work, we report engineered electrocatalyst/support interface of NbTiO4 nanoparticles supported on nitrogen-doped carbon nanorods (NbTiO4@NCNR) to catalyze NRR. Insisted by the pitfalls to rationally design N2 reduction catalysts, the strong catalyst-support interaction strategy is adapted to tune the selectivity towards NRR. Electrochemical tests reveal that NbTiO4@NCNR hybrid accelerates a 10-fold increase in N2 selectivity compared to pure metal oxide. Using first-principles calculations, we identify the underlying mechanism of enhanced performance: bridging bonds in the interface as electron transport channels to promote the N2 reduction kinetics. Essentially, this study provides an insight into how to overcome the immense kinetic barrier of NRR using smartly engineered interfaces of hybrid materials.



中文翻译:

通过协同电子耦合效应在 NbTiO4 和掺氮碳纳米棒的混合界面中加速 N2 还原动力学

通过大气氮还原反应(NRR)的电化学氨合成是一种有前途的可持续肥料和无碳氢能源载体的方法。对析氢反应和惰性氮 (N 2 )不可避免的选择性差距阻碍了氮阴极的设备级使用。在这项工作中,我们报告了负载在氮掺杂碳纳米棒 (NbTiO 4 @NCNR)上的 NbTiO 4纳米粒子的工程电催化剂/载体界面以催化 NRR。由于存在合理设计 N 2还原催化剂的缺陷,强催化剂-载体相互作用策略适用于调整对 NRR 的选择性。电化学测试表明,NbTiO 4与纯金属氧化物相比,@NCNR 混合可加速 N 2选择性增加 10 倍。使用第一性原理计算,我们确定了增强性能的潜在机制:界面中的桥接键作为电子传输通道以促进 N 2还原动力学。从本质上讲,这项研究为如何使用混合材料的巧妙设计的界面克服 NRR 的巨大动力学障碍提供了见解。

更新日期:2021-11-22
down
wechat
bug