当前位置: X-MOL 学术J. Biol. Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Molecular insights into substrate recognition and catalysis by phthalate dioxygenase from Comamonas testosteroni.
Journal of Biological Chemistry ( IF 4.0 ) Pub Date : 2021-11-17 , DOI: 10.1016/j.jbc.2021.101416
Jai Krishna Mahto 1 , Neetu Neetu 1 , Bhairavnath Waghmode 1 , Eugene Kuatsjah 2 , Monica Sharma 1 , Debabrata Sircar 1 , Ashwani Kumar Sharma 1 , Shailly Tomar 1 , Lindsay D Eltis 2 , Pravindra Kumar 1
Affiliation  

Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 μM-1s-1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.

中文翻译:

来自 Comamonas testosteroni 的邻苯二甲酸双加氧酶对底物识别和催化的分子洞察。

邻苯二甲酸盐是一种增塑剂、内分泌干扰物和潜在致癌物,可被多种细菌降解。这种降解由邻苯二甲酸双加氧酶 (PDO) 引发,PDO 是一种 Rieske 加氧酶 (RO),可催化邻苯二甲酸二羟基化为二氢二醇。尽管缺乏结构数据,PDO 长期以来一直是理解 RO 的模型。在这里,我们从 Comamonas testosteroni KF1 中纯化了 PDOKF1,发现它对邻苯二甲酸酯的表观 kcat/Km 为 0.58 ± 0.09 μM-1s-1,比对苯二甲酸酯高 25 倍以上。该酶的晶体结构在 2.1 Å 分辨率下显示,它是一个六聚体,包含两个堆叠的 α3 三聚体,这是以前在 RO 晶体结构中未观察到的配置。我们表明,在每个三聚体中,原体采用 RO 典型的头对尾配置。三聚体的堆叠由两个延伸的螺旋稳定,这使得 PDOKF1 的催化结构域比其他表征的 RO 更大。PDOKF1 与邻苯二甲酸酯和对苯二甲酸酯的复合物显示,Arg207 和 Arg244,活性位点一侧的两个残基,将这些底物定位为区域特异性羟基化。与它们作为底物特异性决定因素的作用一致,用丙氨酸替换任一残基产生的变体不能检测到周转邻苯二甲酸酯。总之,这些结果提供了对污染物降解酶的重要见解,该酶已作为 RO 的范例,并促进了这种酶在生物修复和生物催化应用中的工程设计。PDOKF1 与邻苯二甲酸酯和对苯二甲酸酯的复合物显示,Arg207 和 Arg244,活性位点一侧的两个残基,将这些底物定位为区域特异性羟基化。与它们作为底物特异性决定因素的作用一致,用丙氨酸替换任一残基产生的变体不能检测到周转邻苯二甲酸酯。总之,这些结果提供了对污染物降解酶的重要见解,该酶已作为 RO 的范例,并促进了这种酶在生物修复和生物催化应用中的工程设计。PDOKF1 与邻苯二甲酸酯和对苯二甲酸酯的复合物显示,Arg207 和 Arg244,活性位点一侧的两个残基,将这些底物定位为区域特异性羟基化。与它们作为底物特异性决定因素的作用一致,用丙氨酸替换任一残基产生的变体不能检测到周转邻苯二甲酸酯。总之,这些结果提供了对污染物降解酶的重要见解,该酶已作为 RO 的范例,并促进了这种酶在生物修复和生物催化应用中的工程设计。用丙氨酸替换任一残基产生了未检测到周转邻苯二甲酸酯的变体。总之,这些结果提供了对污染物降解酶的重要见解,该酶已作为 RO 的范例,并促进了这种酶在生物修复和生物催化应用中的工程设计。用丙氨酸替换任一残基产生了未检测到周转邻苯二甲酸酯的变体。总之,这些结果提供了对污染物降解酶的重要见解,该酶已作为 RO 的范例,并促进了这种酶在生物修复和生物催化应用中的工程设计。
更新日期:2021-11-17
down
wechat
bug