当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dynamics of radiative Eyring-Powell MHD nanofluid containing gyrotactic microorganisms exposed to surface suction and viscosity variation
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2021-11-19 , DOI: 10.1016/j.csite.2021.101659
Naseer M. Khan , Awatef Abidi , Ilyas Khan , Fakhirah Alotaibi , Abdulaziz H. Alghtani , M.A. Aljohani , Ahmed M. Galal

Inspired by the widespread use of bioconvective nanofluids used in the formation of microbial fuel cells, microbial oil extraction processes, the food industry and more. Therefore, a two-dimensional flow of Eyring-Powell's nanofluid containing gyrotactic microorganisms has been developed by moving across a porous plate that is exposed to thermal radiation and surface suction. The Buongiorno nanofluid model is introduced to incorporate the energy and momentum equations, while the Rosseland nonlinear approximation was introduced to incorporate solar radiation properties into the energy equations. The MATLAB ‘bvp4c’ scheme was implemented to find a numerical solution to the problem. The influence of various physical parameters on the velocity, temperature and concentration distribution is analyzed. Suction lowers the temperature but increases the heat transfer rate. In addition, the suction velocity can be compensated by implanting a magnetic field in the flow field. With the enhancement of the Brownian movement and the thermophoretic movement, the temperature distribution of the brown movement increases faster than the temperature distribution of the thermophoretic movement, as does the volume fraction of the nanoparticles. The opposite trend can be observed as the Peclet number Pe increases. The suction reduces the concentration of the microorganisms and the magnetic field increases the concentration of the microorganisms. The higher the Lewis number, the lower the concentration of microorganisms. The Biot number Bi can increase the temperature and concentration of nanoparticles.



中文翻译:

暴露于表面吸力和粘度变化的含有回旋微生物的辐射 Eyring-Powell MHD 纳米流体的动力学

受到生物对流纳米流体在微生物燃料电池形成、微生物油提取过程、食品工业等领域的广泛使用的启发。因此,通过在暴露于热辐射和表面吸力的多孔板上移动,已经开发出含有回旋微生物的 Eyring-Powell 纳米流体的二维流动。引入 Buongiorno 纳米流体模型以合并能量和动量方程,而引入 Rosseland 非线性近似以将太阳辐射特性合并到能量方程中。MATLAB 'bvp4c' 方案被实施以找到该问题的数值解。分析了各种物理参数对速度、温度和浓度分布的影响。吸力降低了温度,但增加了传热率。此外,可以通过在流场中植入磁场来补偿吸入速度。随着布朗运动和热泳运动的增强,棕色运动的温度分布比热泳运动的温度分布增加得更快,纳米颗粒的体积分数也是如此。可以观察到相反的趋势作为 Peclet 数 纳米颗粒的体积分数也是如此。可以观察到相反的趋势作为 Peclet 数 纳米颗粒的体积分数也是如此。可以观察到相反的趋势作为 Peclet 数Pe增加。吸力降低微生物的浓度,磁场增加微生物的浓度。路易斯数越高,微生物的浓度越低。比奥数Bi可以提高纳米粒子的温度和浓度。

更新日期:2021-11-20
down
wechat
bug