当前位置: X-MOL 学术Crop Prot. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of crop rotation with chemical and organic fertilization on weed seed density, species diversity, and community structure after 13 years
Crop Protection ( IF 2.8 ) Pub Date : 2021-11-19 , DOI: 10.1016/j.cropro.2021.105860
C.P. Nath 1 , K.K. Hazra 1 , Narendra Kumar 1 , S.S. Singh 2 , C.S. Praharaj 1 , Ummed Singh 1 , N.P. Singh 1 , R. Nandan 3
Affiliation  

We presumed that ecological engineering approaches such as pulse crop inclusion in crop rotation and integrated nutrient management (INM) would have higher weed seed density and diversity compared with continuous cereal-cereal rotation and chemical fertilization in long–run. Hence, we investigated the viable weed seed density and diversity in soil using the seedling emergence method in 0–7.5, 7.5–15, and 0–15 cm depth. Soil sampling was performed in 2016 after 13 years of field experimentation with same treatment combinations and layout on a sandy loam soil of Kanpur, India. The field experiment consisted of four crop rotations (since 2003): rice (Oryza sativa L.)–wheat (Triticum aestivum L.) (R–W), rice–wheat–mungbean [Vigna radiata (L.) R. Wilczek] (R–W–Mb), rice–wheat–rice–chickpea (Cicer arietinum L.) (two years rotation: R–W–R–C), rice–chickpea (R–C) and three nutrient management: control (without fertilization: CT), integrated nutrient management (INM), and recommended inorganic fertilization (RDF). Of the total 30 emerged weed species, 21 species were broad–leaved (70%), 8 grasses (26.7%), and 1 sedge (3.3%). Seed density of Leptochloa chinensis (L.) Nees was significantly higher in R–C(RDF) than R–W–Mb(RDF) and R–W(RDF). While, Lepidium didymum L., Dactyloctenium aegyptium (L.) Willd. and Anagallis arvensis L. were higher in R–W–Mb rotation over the R–W (P < 0.05). Pulse based cropping resulted in 6.1–13.2% higher (P < 0.05) seed density over R–W rotation at 0–7.5 cm depth, while, R–W rotation attributed 2.5–4.9% higher (P < 0.05) seed density than those of remaining rotations at 7.5–15 cm depth. In total depth (0–15 cm), total viable seed density followed the order of R–C = R–W–Mb (P > 0.05) > R–W–R–C (P < 0.05) > R–W (P < 0.05) and INM > RDF > CT (P < 0.05). Importance value index (IVI) of Cyperus rotundus L. and Medicago polymorpha L. was higher for R–W rotation than R–W–Mb, R–W–R–C and R–C (P < 0.05). Notably, pulse based cropping (R–W–Mb and R–C) had the lower ecological dominance and higher Shannon, Simpson, and richness indices than the R–W rotation at 0–7.5 cm and 0–15 cm layer, because of higher species diversity. RDF contained 31% higher ecological dominance than in the INM practice (P < 0.05). Principal component analysis showed that crop rotations and nutrient management mainly influenced the M. polymorpha, D. aegyptium, L. chinensis and L. didymum after 13 years. Medicago polymorpha came out as strongly associated with R–W(INM), while, Spergula arvensis L. and Ammannia baccifera L. emerged as characteristic species in R–C rotation. Thus, it is implied that pulse based cropping and INM could enhance weed seed density with higher species diversity compared with the R–W rotation and RDF in long-run.



中文翻译:

13 年后轮作与化学和有机施肥对杂草种子密度、物种多样性和群落结构的影响

我们假设生态工程方法,例如将豆类作物纳入轮作和综合养分管理 (INM),与连续谷物 - 谷物轮作和化学施肥相比,从长远来看将具有更高的杂草种子密度和多样性。因此,我们使用出苗方法在 0-7.5、7.5-15 和 0-15 厘米深度调查了土壤中可存活的杂草种子密度和多样性。经过 13 年的田间试验,在印度坎普尔的砂质壤土上采用相同的处理组合和布局,于 2016 年进行了土壤采样。田间试验包括四次轮作(自 2003 年以来):水稻(Oryza sativa L.)-小麦(Triticum aestivum L.)(R-W),水稻-小麦-绿豆 [ Vigna radiata(L.) R. Wilczek] (R-W-Mb),水稻-小麦-水稻-鹰嘴豆 ( Cicer arietinum L.)(两年轮换:R-W-R-C),水稻-鹰嘴豆(R-C )和三种养分管理:对照(​​不施肥:CT)、综合养分管理(INM)和推荐的无机施肥(RDF)。在总共出现的 30 种杂草中,21 种是阔叶(70%)、8 种草(26.7%)和 1 种莎草(3.3%)。Leptochloa chinensis (L.) Nees 在 R-C(RDF) 中的种子密度显着高于 R-W-Mb(RDF) 和 R-W(RDF)。而Lepidium didymum L.、Dactyloctenium aegyptium (L.) Willd。和Anagallis arvensis L. 的 R-W-Mb 旋转高于 R-W(P < 0.05)。 在 0-7.5 厘米深度,基于脉冲的种植导致种子密度比 R-W 轮作高 6.1-13.2% ( P < 0.05),而 R-W 轮作 比那些高 2.5-4.9% ( P < 0.05) 种子密度在 7.5-15 厘米深度的剩余旋转。在总深度 (0-15 cm) 中,总活种子密度遵循 R–C = R–W–Mb ( P  > 0.05) > R–W–R–C ( P  < 0.05) > R–W ( P  < 0.05) 和 INM > RDF > CT ( P  < 0.05)。香附紫花苜蓿的重要价值指数(IVI)在R-W 轮作中高于 R-W-Mb、R-W-R-C 和 R-C(P < 0.05)。值得注意的是,基于脉冲的作物(R-W-Mb 和 R-C)比 0-7.5 厘米和 0-15 厘米层的 R-W 轮作具有更低的生态优势和更高的香农、辛普森和丰富度指数,因为更高的物种多样性。RDF 包含比 INM 实践高 31% 的生态优势(P  < 0.05)。主成分分析表明,作物轮作和养分管理,主要影响了M.多形D. aegyptium羊草L. didymum 13年后。紫花苜蓿与 R-W(INM) 密切相关,而Spergula arvensis L. 和Ammannia bacciferaL. 作为 R-C 轮换中的特征物种出现。因此,这意味着从长远来看,与 R-W 轮作和 RDF 相比,基于脉冲的作物和 INM 可以提高杂草种子密度,并具有更高的物种多样性。

更新日期:2021-11-25
down
wechat
bug