当前位置: X-MOL 学术Adv. Electron. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Probing Relaxation Dynamics and Stepped Domain Switching in Boron-Alloyed VO2
Advanced Electronic Materials ( IF 5.3 ) Pub Date : 2021-11-19 , DOI: 10.1002/aelm.202100932
Adelaide Bradicich 1 , Heidi Clarke 1 , Erick J. Braham 2 , Aliya Yano 1 , Diane Sellers 2 , Sarbajit Banerjee 2 , Patrick J. Shamberger 1
Affiliation  

The characteristic metal–insulator phase transition (MIT) in vanadium dioxide results in nonlinear electrical transport behavior, allowing VO2 devices to imitate the complex functions of neurological behavior. Chemical doping is an established method for varying the properties of the MIT, and interstitial dopant boron has been shown to generate a unique dynamic relaxation effect in individual B-VO2 particles. This paper describes the first demonstration of an electrically stimulated B-VO2 proto-device which manifests a time-dependent critical transformation temperature and switching voltage derived from the coupling of dopant diffusion dynamics and the metal–insulator transition of VO2. During quasi-steady current-driven transitions, the electrical responses of B-VO2 proto-devices show a step-by-step progression through the phase transformation, evidencing domain transformations within individual particles. The dynamic relaxation effect is shown to increase the critical switching voltage by up to 41% (ΔVcrit = 0.13 V) and also to increase the resistivity of the M1 phase of B-VO2 by 14%, imbuing a memristive response derived from intrinsic material properties. These observations demonstrate the dynamic relaxation effect in B-VO2 proto-devices whose electrical transport responses can be adjusted by electronic phase transitions triggered by temperature but also by time as a result of intrinsic dynamics of interstitial dopants.

中文翻译:

探测硼合金 VO2 中的弛豫动力学和阶梯域切换

二氧化钒中特有的金属-绝缘体相变 (MIT) 导致非线性电传输行为,使 VO 2设备能够模仿神经行为的复杂功能。化学掺杂是改变 MIT 特性的既定方法,并且间隙掺杂剂硼已被证明可以在单个 B-VO 2粒子中产生独特的动态弛豫效应。本文描述了电激发 B-VO 2原型器件的首次演示,该器件表现出与时间相关的临界转变温度和开关电压,该转换电压源自掺杂剂扩散动力学和 VO 2的金属-绝缘体转变的耦合。. 在准稳态电流驱动跃迁期间,B-VO 2原型器件的电响应显示出通过相变的逐步进展,证明了单个粒子内的域转换。动态弛豫效应显示可将临界开关电压提高多达 41% (Δ V crit  = 0.13 V),并且还将 B-VO 2的 M1 相的电阻率提高14%,赋予源自于的忆阻响应固有的材料特性。这些观察证明了 B-VO 2中的动态弛豫效应原型器件的电传输响应可以通过温度触发的电子相变进行调整,也可以通过间隙掺杂剂的内在动力学来调整时间。
更新日期:2021-11-19
down
wechat
bug