当前位置: X-MOL 学术IEEE Open J. Nanotechnol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Advanced 3D Integration Technologies in Various Quantum Computing Devices
IEEE Open Journal of Nanotechnology ( IF 1.8 ) Pub Date : 2021-11-02 , DOI: 10.1109/ojnano.2021.3124363
Peng Zhao , Yu Dian Lim , Hong Yu Li , Luca Guidoni , Chuan Seng Tan

As a key approach to augment Moore's Law scaling, 3D integration technologies have enabled small form factor, low cost, diverse, modular and flexible assembly of integrated circuits in the semiconductor industry. It is therefore essential to adopt these technologies to the quantum computing devices which are at the nascent stage and generally require large scale integration to be practical. In this review, we focus on four popular quantum bit (qubit) candidates (trapped ion, superconducting circuit, silicon spin and photon) which are encoded by distinct physical systems but all intrinsically compatible with advanced CMOS fabrication process. We introduce the specific scalability bottlenecks of each qubit type and present the current solutions using 3D integration technologies. We evaluate and classify these technologies into three main categories based on the hierarchy. A brief discussion regarding the thermal management is also provided. We believe this review serves to provide some useful insights on the contributions of interconnect, integration and packaging to the field of quantum computing where rapid development is ongoing.

中文翻译:


各种量子计算设备中的先进3D集成技术



作为扩大摩尔定律扩展的关键方法,3D 集成技术使半导体行业的集成电路实现了小尺寸、低成本、多样化、模块化和灵活的组装。因此,有必要将这些技术应用于处于初级阶段并且通常需要大规模集成才能实用的量子计算设备。在这篇综述中,我们重点关注四种流行的量子位 (qubit) 候选者(俘获离子、超导电路、硅自旋和光子),它们由不同的物理系统编码,但本质上都与先进的 CMOS 制造工艺兼容。我们介绍了每种量子位类型的具体可扩展性瓶颈,并介绍了使用 3D 集成技术的当前解决方案。我们根据层次结构评估这些技术并将其分为三个主要类别。还提供了有关热管理的简要讨论。我们相信这篇综述有助于提供一些有用的见解,了解互连、集成和封装对正在快速发展的量子计算领域的贡献。
更新日期:2021-11-02
down
wechat
bug