当前位置: X-MOL 学术Robot. Intell. Autom. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Full-state modeling and nonlinear control of balloon supported unmanned aerial vehicle
Robotic Intelligence and Automation ( IF 1.9 ) Pub Date : 2021-11-18 , DOI: 10.1108/aa-03-2021-0031
Naveed Mazhar 1 , Fahad Mumtaz Malik 1 , Raja Amer Azim 2 , Abid Raza 1 , Rameez Khan 1 , Qasim Umar Khan 1
Affiliation  

Purpose

The purpose of this study is to provide the full-state mathematical model and devise a nonlinear controller for a balloon-supported unmanned aerial vehicle (BUAV).

Design/methodology/approach

Newtonian mechanics is used to establish the nonlinear mathematical model of the proposed vehicle assembly which incorporates the dynamics of both balloon and quadrotor UAV. A controllable form of the nine degrees of freedom model is derived. Backstepping control is designed for the proposed model and simulations are performed to assess the tracking performance of the proposed control.

Findings

The results show that the proposed methodology works well for smooth trajectories in presence of wind gusts. Moreover, the final mathematical model is affine and various nonlinear control techniques can be used in the future for improved system performance.

Originality/value

Multi-rotor unmanned aerial vehicles (MUAVs) are equipped with controllers but are constrained by smaller flight endurance and payload carrying capability. On the contrary, lighter than air (LTA) aerial vehicles have longer flight times but have poor control performance for outdoor operations. One of the solutions to achieve better flight endurance and payload carrying capability is to augment the LTA balloon to MUAV. The novelty of this research lies in full-order mathematical modeling along with transformation to controllable form for the BUAV assembly.



中文翻译:

气球支撑无人机全状态建模与非线性控制

目的

本研究的目的是为气球支撑无人机(BUAV)提供全状态数学模型并设计非线性控制器。

设计/方法/方法

牛顿力学用于建立所提出的车辆组件的非线性数学模型,该模型结合了气球和四旋翼无人机的动力学。导出了九自由度模型的可控形式。为所提出的模型设计了反步控制,并进行了仿真以评估所提出的控制的跟踪性能。

发现

结果表明,所提出的方法适用于存在阵风的平滑轨迹。此外,最终的数学模型是仿射的,未来可以使用各种非线性控制技术来提高系统性能。

原创性/价值

多旋翼无人机 (MUAV) 配备了控制器,但受限于较小的飞行续航时间和有效载荷承载能力。相反,轻于空气(LTA)飞行器的飞行时间较长,但对于户外操作的控制性能较差。实现更好的飞行耐力和有效载荷承载能力的解决方案之一是将 LTA 气球增强为 MUAV。这项研究的新颖之处在于全阶数学建模以及 BUAV 组件向可控形式的转换。

更新日期:2022-01-11
down
wechat
bug