当前位置: X-MOL 学术Proc. Inst. Mech. Eng. C J. Mec. Eng. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recovery and effective utilization of waste heat from the exhaust of internal combustion engines for cooling applications using ANSYS
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ( IF 1.8 ) Pub Date : 2021-11-17 , DOI: 10.1177/09544062211056877
Ghulam Abbas Gohar 1, 2 , Muhammad Zia Ullah Khan 2 , Hassan Raza 1 , Arslan Ahmad 2 , Yasir Raza 2 , Tareq Manzoor 3 , Zeeshan Arshad 2 , Faraz Aslam 2 , Muhammad Safi Ullah 2 , Musa Arif 2
Affiliation  

The exhaust gases from an internal combustion (IC) engine carry away about 75% of the heat energy which means only 25% of heat energy is operated for power production. A recovery unit at the exhaust outlet port can ensure heat exchange between different temperature fluids through conjugate heat transfer phenomena. This study represents heat recovery from exhaust gases that are emitted from IC engines which can be utilized in various applications such as vapor absorption refrigeration systems. In the present work, a new type of perforated fin heat exchanger for waste heat recovery of exhaust gases is designed using SolidWorks, and the flow field design of the heat recovery system is optimized using ANSYS software. Various parameters (velocity, pressure, temperature, and heat conduction) of hot and cold fluid have been analyzed. Inlet velocity of cold fluids including refrigerant (LiBr solution), water, and graphene oxide (GO) nanofluid have been adopted at 0.03 m/s, 0.165 m/s, and 0.3 m/s, respectively. Inlet velocity of hot fluid is taken as 2 m/s, 4 m/s, and 6 m/s, respectively, to develop a test matrix. The results showed that maximum temperature reduction by the exhaust is achieved at 104.8°C using graphene oxide nanofluids with an inlet velocity of 0.3 m/s and exit velocity of 2 m/s in the heat recovery unit. Similarly, temperature reduction by exhaust gases is acquired at 102 °C using water and 96.34 °C by using a refrigerant (LiBr solution) with the same exit velocity (2m/s). Furthermore, maximum effectiveness of 0.489 is also obtained for GO nanofluid when compared with water and the refrigerant. On the other hand, the refrigerant has the maximum log mean temperature difference from all fluids with a value of 224.4 followed by water and GO.



中文翻译:

使用 ANSYS 从内燃机排气中回收和有效利用用于冷却应用的废热

内燃机 (IC) 发动机的废气带走了大约 75% 的热能,这意味着只有 25% 的热能用于发电。排气口的回收装置通过共轭传热现象保证不同温度流体之间的热交换。这项研究代表了从 IC 发动机排放的废气中回收热量,这些废气可用于各种应用,例如蒸​​汽吸收式制冷系统。在目前的工作中,利用SolidWorks设计了一种用于废气余热回收的新型穿孔翅片换热器,并利用ANSYS软件对热回收系统的流场设计进行了优化。已经分析了冷热流体的各种参数(速度、压力、温度和热传导)。包括制冷剂(溴化锂溶液)、水和氧化石墨烯(GO)纳米流体在内的冷流体的入口速度分别为 0.03 m/s、0.165 m/s 和 0.3 m/s。热流体的入口速度分别取为 2 m/s、4 m/s 和 6 m/s,以开发测试矩阵。结果表明,在热回收单元中使用入口速度为 0.3 m/s 和出口速度为 2 m/s 的氧化石墨烯纳米流体在 104.8°C 时实现了排气的最大温度降低。类似地,使用水在 102 °C 和 96.34 °C 下通过使用具有相同出口速度的制冷剂(LiBr 溶液)获得废气温度降低 (2 热流体的入口速度分别取为 2 m/s、4 m/s 和 6 m/s,以开发测试矩阵。结果表明,在热回收单元中使用入口速度为 0.3 m/s 和出口速度为 2 m/s 的氧化石墨烯纳米流体在 104.8°C 时实现了排气的最大温度降低。类似地,使用水在 102 °C 和 96.34 °C 下通过使用具有相同出口速度的制冷剂(LiBr 溶液)获得废气温度降低 (2 热流体的入口速度分别取为 2 m/s、4 m/s 和 6 m/s,以开发测试矩阵。结果表明,在热回收单元中使用入口速度为 0.3 m/s 和出口速度为 2 m/s 的氧化石墨烯纳米流体在 104.8°C 时实现了排气的最大温度降低。类似地,使用水在 102 °C 和 96.34 °C 下通过使用具有相同出口速度的制冷剂(LiBr 溶液)获得废气温度降低 (2/)。此外,与水和制冷剂相比,GO 纳米流体也获得了 0.489 的最大效率。另一方面,制冷剂与所有流体的对数平均温差最大,值为 224.4,其次是水和 GO。

更新日期:2021-11-17
down
wechat
bug