当前位置: X-MOL 学术Photonics Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hybrid photonic-plasmonic cavities based on the nanoparticle-on-a-mirror configuration
Photonics Research ( IF 6.6 ) Pub Date : 2021-11-15 , DOI: 10.1364/prj.433761
Angela I. Barreda 1, 2 , Mario Zapata-Herrera 3, 4 , Isabelle M. Palstra 5, 6 , Laura Mercadé 2 , Javier Aizpurua 3, 4 , A. Femius Koenderink 5, 6 , Alejandro Martínez 2
Affiliation  

Hybrid photonic-plasmonic cavities have emerged as a new platform to increase light–matter interaction capable to enhance the Purcell factor in a singular way not attainable with either photonic or plasmonic cavities separately. In the hybrid cavities proposed so far, the plasmonic element is usually a metallic bow-tie antenna, so the plasmonic gap—defined by lithography—is limited to minimum values of several nanometers. Nanoparticle-on-a-mirror (NPoM) cavities are far superior to achieve the smallest possible mode volumes, as plasmonic gaps smaller than 1 nm can be created. Here, we design a hybrid cavity that combines an NPoM plasmonic cavity and a dielectric-nanobeam photonic crystal cavity operating at transverse-magnetic polarization. The metallic nanoparticle can be placed very close (<1 nm) to the upper surface of the dielectric cavity, which acts as a low-reflectivity mirror. We demonstrate through numerical calculations of the local density of states that this hybrid plasmonic-photonic cavity exhibits quality factors Q above 103 and normalized mode volumes V down to 103, thus resulting in high Purcell factors (FP105), while being experimentally feasible with current technology. Our results suggest that hybrid cavities with sub-nanometer gaps should open new avenues for boosting light–matter interaction in nanophotonic systems.

中文翻译:

基于纳米粒子镜面配置的混合光子 - 等离子体腔

混合光子-等离子体腔已成为一种新平台,可以增加光-物质相互作用,能够以单独的方式增强珀塞尔因子,这是光子腔或等离子体腔分别无法实现的。在迄今为止提出的混合腔中,等离子体元件通常是金属蝴蝶结天线,因此由光刻定义的等离子体间隙被限制在几个纳米的最小值。镜上纳米粒子 (NPoM) 腔远优于实现最小可能的模式体积,因为可以创建小于 1 nm 的等离子体间隙。在这里,我们设计了一个混合腔,它结合了 NPoM 等离子体腔和在横向磁极化下工作的介电纳米束光子晶体腔。金属纳米粒子可以放置得非常近(<1 纳米) 到电介质腔的上表面,作为低反射镜。我们通过局部状态密度的数值计算证明了这种混合等离子体-光子腔具有品质因素 以上 103 和归一化模式体积 向下 103,从而导致高珀塞尔因子(F105),同时使用当前技术在实验上是可行的。我们的研究结果表明,具有亚纳米间隙的混合腔应该为促进纳米光子系统中的光-物质相互作用开辟新的途径。
更新日期:2021-12-01
down
wechat
bug