当前位置: X-MOL 学术Phys. Rev. Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum Enhanced Cavity QED Interferometer with Partially Delocalized Atoms in Lattices
Physical Review Letters ( IF 8.1 ) Pub Date : 2021-11-17 , DOI: 10.1103/physrevlett.127.210401
Anjun Chu 1, 2 , Peiru He 1, 2 , James K Thompson 1 , Ana Maria Rey 1, 2
Affiliation  

We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to cancel the undesirable inhomogeneities arising from the mismatch between the lattice and cavity fields and to generate spin squeezed states via a uniform one-axis twisting model. The quantum enhanced sensitivity of the states is combined with the subsequent application of a compound pulse sequence that allows us to separate atoms by several lattice sites. This, together with the capability to load small atomic clouds in the lattice at micrometric distances from a surface, make our setup ideal for sensing short-range forces. We show that for arrays of 104 atoms, our protocol can reduce the required averaging time by a factor of 10 compared to unentangled lattice-based interferometers after accounting for primary sources of decoherence.

中文翻译:

具有晶格中部分离域原子的量子增强型腔 QED 干涉仪

我们提出了一种量子增强干涉测量协议,用于在由驻波腔支持的光学晶格中使用冷原子进行重力测量和力传感。通过将原子加载到部分离域的 Wannier-Stark 状态,可以消除由晶格和腔场之间的不匹配引起的不良不均匀性,并通过均匀的单轴扭曲模型产生自旋压缩状态。状态的量子增强灵敏度与复合脉冲序列的后续应用相结合,使我们能够通过几个晶格位点分隔原子。这一点,再加上能够在距离表面微米距离的晶格中加载小原子云,使我们的设置成为感应短程力的理想选择。我们证明对于数组104 原子,在考虑了退相干的主要来源后,我们的协议可以将所需的平均时间减少 10 倍,与基于未纠缠的基于晶格的干涉仪相比。
更新日期:2021-11-17
down
wechat
bug