当前位置: X-MOL 学术Case Stud. Therm. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unsteady heat transfer enhancement in Williamson fluid in Darcy-Forchheimer porous medium under non-Fourier condition of heat flux
Case Studies in Thermal Engineering ( IF 6.4 ) Pub Date : 2021-11-17 , DOI: 10.1016/j.csite.2021.101647
M. Nawaz 1 , M. Adil Sadiq 2, 3
Affiliation  

Non-Newtonian constitutive equations and models for hybrid particles are simultaneously coupled with conservation laws. The energy equation is derived under non-Fourier heat flux condition. The resulting mathematical models are numerically solved by the finite element method (FEM). The modeled problems are convertible into their special case published in the literature. The computed results are ensured to be meshed-free and convergent. The numerical results are made convergent against related rheological parameters and numerical outcomes are visualized. The results based on visualization and numerical outcomes are discussed. The velocity of Williamson fluid decreases as a function of Williamson parameter. It is also observed that the velocity of mono nano - Williamson fluid decreases faster than the hybrid nano - Williamson fluid. Darcy and Forchheimer porous media offer resistance to the flow and therefore, play a significant role in decreasing the thickness of the momentum boundary layer. Heat generation in the fluid is utilized in increasing the kinetic energy of the fluid particles. Therefore, the internal energy of the fluid particles is increased. Hence, the temperature of fluid particles increases. Numerical results have demonstrated that heat generation in hybrid nano-Williamson fluid is greater than the heat generated by the particles of mono nano - Williamson fluid. The wall shear stress (for both types of nanofluids) increases when We and Fr are increased. The wall shear stress for the case of hybrid nanofluid is greater than the wall shear stress for mono nanofluid. The rate of heat transfer in mono nanofluid is less than the rate of heat transfer in hybrid nanofluid.



中文翻译:

非傅立叶热通量条件下 Darcy-Forchheimer 多孔介质中 Williamson 流体的非定常传热增强

混合粒子的非牛顿本构方程和模型同时与守恒定律相结合。能量方程是在非傅立叶热通量条件下推导出来的。由此产生的数学模型通过有限元方法 (FEM) 进行数值求解。建模的问题可以转换成他们在文献中发表的特例。确保计算结果是无网格和收敛的。数值结果与相关流变参数收敛,数值结果可视化。讨论了基于可视化和数值结果的结果。威廉姆森流体的速度作为威廉姆森参数的函数而降低。还观察到,单纳米-威廉姆森流体的速度比混合纳米-威廉姆森流体下降得更快。Darcy 和 Forchheimer 多孔介质对流动提供阻力,因此在降低动量边界层的厚度方面发挥着重要作用。在流体中产生的热量用于增加流体粒子的动能。因此,流体粒子的内能增加。因此,流体粒子的温度升高。数值结果表明,混合纳米威廉姆森流体产生的热量大于单纳米威廉姆森流体颗粒产生的热量。壁剪切应力(对于两种类型的纳米流体)增加时 在流体中产生的热量用于增加流体粒子的动能。因此,流体粒子的内能增加。因此,流体粒子的温度升高。数值结果表明,混合纳米威廉姆森流体产生的热量大于单纳米威廉姆森流体颗粒产生的热量。壁剪切应力(对于两种类型的纳米流体)增加时 在流体中产生的热量用于增加流体粒子的动能。因此,流体粒子的内能增加。因此,流体粒子的温度升高。数值结果表明,混合纳米威廉姆森流体产生的热量大于单纳米威廉姆森流体颗粒产生的热量。壁剪切应力(对于两种类型的纳米流体)增加时电子Fr增加。混合纳米流体的壁面剪应力大于单纳米流体的壁面剪应力。单纳米流体的传热速率小于混合纳米流体的传热速率。

更新日期:2021-11-17
down
wechat
bug