当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Attitude control strategy for unmanned wheel-legged hybrid vehicles considering the contact of the wheels and ground
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2021-11-14 , DOI: 10.1177/09544070211058382
Hui Liu 1, 2 , Baoshuai Liu 1 , Ziyong Han 2 , Yechen Qin 1, 2 , Xiaolei Ren 1 , Lijin Han 1, 2
Affiliation  

During patrol and surveillance tasks, attitude control is crucial for improving the terrain adaptability of unmanned wheel-legged hybrid vehicles. This paper proposes an attitude control strategy for unmanned wheel-legged hybrid vehicles, considering the contact of the wheels and ground. The proposed method can naturally achieve torque control efficiently of each joint actuator and wheel-side actuator and avoid the discrepancy between off-road terrain and stability. First, an inverse kinematics model is established to resolve the body and each joint rotation angle, and the dynamic model is built based on the multi rigid body theory, considering the contact points planning of wheel and ground. Considering the nonholonomic constraint of the structure scheme, a hierarchical real-time attitude controller for a wheel-legged vehicle is proposed. The upper layer calculates the contact points of each wheel and the ground through the quadratic programming algorithm, and the lower layer is divided into a legged motion generator and a wheel motion generator by a mathematical analysis method. Finally, the proposed method is applied to achieve the tracking and control of the whole-body trajectory. The proposed strategy can achieve the decoupling of wheeled motion generator and legged motion generator, and improve control efficiency.



中文翻译:

考虑车轮与地面接触的无人轮腿混合动力汽车姿态控制策略

在巡逻和监视任务中,姿态控制对于提高无人轮腿混合动力汽车的地形适应性至关重要。本文提出了一种考虑车轮与地面接触的无人轮腿混合动力汽车姿态控制策略。所提出的方法可以自然地实现每个关节执行器和轮侧执行器的有效扭矩控制,并避免越野地形和稳定性之间的差异。首先建立反运动学模型,求解车身及各关节旋转角度,并基于多刚体理论,考虑车轮与地面接触点规划,建立动力学模型。考虑到结构方案的非完整约束,提出了一种轮腿式车辆的分层实时姿态控制器。上层通过二次规划算法计算出每个车轮与地面的接触点,下层通过数学分析方法分为腿运动发生器和车轮运动发生器。最后,应用所提出的方法来实现对全身轨迹的跟踪和控制。所提出的策略可以实现轮式运动发生器和腿式运动发生器的解耦,提高控制效率。

更新日期:2021-11-15
down
wechat
bug