当前位置: X-MOL 学术Proc. Inst. Mech. Eng. Part D J. Automob. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigation of effects of tire contour on aerodynamic characteristics and its optimization
Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ( IF 1.5 ) Pub Date : 2021-11-12 , DOI: 10.1177/09544070211058664
Lingxin Zhang 1, 2 , Haichao Zhou 1, 2 , Guolin Wang 1 , Huiyun Li 1 , Qingyang Wang 3
Affiliation  

Reducing the aerodynamic drag is one of the most important approaches for the development of energy-saving and environment-friendly automobiles. The tire contour has a great influence on the aerodynamic characteristics of automobiles. The aim of this study is to investigate the influence of the tire contour design parameters on the aerodynamic characteristics around a closed wheel, and obtain the optimized tire contour to reduce the automobile aerodynamic drag. A passenger car tire 185/65R14 was selected to conduct the wind tunnel test, and the surface pressure coefficients were used to validate the simulation model established using the detached eddy simulation (DES) model. To decrease tire drag, and taking the upper sidewall height, the tread radii, the tread width, and the transition arc radius of the shoulder as four design variables of contour, a combination of the Latin hypercube experimental design, the Kriging surrogate model, and the adaptive simulated annealing (ASA) algorithm were used to optimize the tire contour design parameters. The changes of flow field around the tire, including the velocity, turbulent kinetic energy, and pressure field were compared and analyzed for further understanding of the drag reduction mechanism. It is found that the aerodynamic drag coefficient of the optimized tire is reduced by 14.5%, and the aerodynamic coefficient drag of the car using the optimized tire is reduced by 7%. The present results are expected to provide useful information for designing new tire structures and improving the aerodynamic performance of the automobile.



中文翻译:

轮胎轮廓对空气动力特性影响的研究及优化

降低气动阻力是发展节能环保汽车的重要途径之一。轮胎轮廓对汽车的空气动力学特性影响很大。本研究的目的是研究轮胎轮廓设计参数对封闭车轮周围空气动力学特性的影响,获得优化的轮胎轮廓以减少汽车空气阻力。选用185/65R14乘用车轮胎进行风洞试验,利用表面压力系数对采用分离涡流模拟(DES)模型建立的仿真模型进行验证。为了减少轮胎阻力,并取上侧壁高度、胎面半径、胎面宽度,将胎肩过渡圆弧半径作为轮廓的四个设计变量,结合拉丁超立方实验设计、克里金代理模型和自适应模拟退火(ASA)算法对轮胎轮廓设计参数进行优化。对比分析了轮胎周围流场的变化,包括速度、湍流动能和压力场,以进一步了解减阻机理。发现优化轮胎的气动阻力系数降低了14.5%,使用优化轮胎的汽车气动系数阻力降低了7%。目前的结果有望为设计新的轮胎结构和提高汽车的空气动力学性能提供有用的信息。结合拉丁超立方实验设计、克里金代理模型和自适应模拟退火(ASA)算法,优化轮胎轮廓设计参数。对比分析了轮胎周围流场的变化,包括速度、湍流动能和压力场,以进一步了解减阻机理。发现优化轮胎的气动阻力系数降低了14.5%,使用优化轮胎的汽车气动系数阻力降低了7%。目前的结果有望为设计新的轮胎结构和提高汽车的空气动力学性能提供有用的信息。结合拉丁超立方实验设计、克里金代理模型和自适应模拟退火(ASA)算法,优化轮胎轮廓设计参数。对比分析了轮胎周围流场的变化,包括速度、湍流动能和压力场,以进一步了解减阻机理。发现优化轮胎的气动阻力系数降低了14.5%,使用优化轮胎的汽车气动系数阻力降低了7%。目前的结果有望为设计新的轮胎结构和提高汽车的空气动力学性能提供有用的信息。采用自适应模拟退火(ASA)算法优化轮胎轮廓设计参数。对比分析了轮胎周围流场的变化,包括速度、湍流动能和压力场,以进一步了解减阻机理。发现优化轮胎的气动阻力系数降低了14.5%,使用优化轮胎的汽车气动系数阻力降低了7%。目前的结果有望为设计新的轮胎结构和提高汽车的空气动力学性能提供有用的信息。采用自适应模拟退火(ASA)算法优化轮胎轮廓设计参数。对比分析了轮胎周围流场的变化,包括速度、湍流动能和压力场,以进一步了解减阻机理。发现优化轮胎的气动阻力系数降低了14.5%,使用优化轮胎的汽车气动系数阻力降低了7%。目前的结果有望为设计新的轮胎结构和提高汽车的空气动力学性能提供有用的信息。和压力场进行了比较和分析,以进一步了解减阻机制。发现优化轮胎的气动阻力系数降低了14.5%,使用优化轮胎的汽车气动系数阻力降低了7%。目前的结果有望为设计新的轮胎结构和提高汽车的空气动力学性能提供有用的信息。和压力场进行了比较和分析,以进一步了解减阻机制。发现优化轮胎的气动阻力系数降低了14.5%,使用优化轮胎的汽车气动系数阻力降低了7%。目前的结果有望为设计新的轮胎结构和提高汽车的空气动力学性能提供有用的信息。

更新日期:2021-11-13
down
wechat
bug