当前位置: X-MOL 学术Prog. Aerosp. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aircraft thermal management: Practices, technology, system architectures, future challenges, and opportunities
Progress in Aerospace Sciences ( IF 9.6 ) Pub Date : 2021-11-12 , DOI: 10.1016/j.paerosci.2021.100767
A.S.J. van Heerden 1 , D.M. Judt 2 , S. Jafari 1 , C.P. Lawson 2 , T. Nikolaidis 1 , D. Bosak 3
Affiliation  

The provision of adequate thermal management is becoming increasingly challenging on both military and civil aircraft. This is due to significant growth in the magnitude of onboard heat loads, but also because of their changing nature, such as the presence of more low-grade, high heat flux heat sources and the inability of some waste heat to be expelled as part of engine exhaust gases. The increase in the use of composites presents a further issue to address, as these materials are not as effective as metallic materials in transferring waste heat from the aircraft to the surrounding atmosphere. These thermal management challenges are so severe that they are becoming one of the major impediments to improving aircraft performance and efficiency. In this review, these challenges are expounded upon, along with possible solutions and opportunities from the literature. After introducing relevant factors from the ambient environment, the discussion of the challenges and opportunities is guided by a simple classification of the elements involved in thermal management systems. These elements comprise heat sources, heat acquisition mechanisms, thermal transport systems, heat rejection to sinks, and energy conversion and storage. Heat sources include both those from propulsion and airframe systems. Heat acquisition mechanisms are the means by which thermal energy is acquired from the sources. Thermal transport systems comprise cooling loops and thermodynamic cycles, along with their associated components and fluids, which move the heat from the source to the sinks over potentially large distances. The terminal aircraft heat sinks include atmospheric air, fuel, and the aircraft structure. In addition to the discussions on these different elements of thermal management systems, several topics of particular priority in aircraft thermal management research are deliberated upon in detail. These are thermal management for electrified propulsion aircraft, ultra-high bypass ratio geared turbofans, and high power airborne military systems; environmental control systems; power and thermal management systems; thermal management on supersonic transport aircraft; and novel modelling and simulation processes and tools for thermal management.



中文翻译:

飞机热管理:实践、技术、系统架构、未来挑战和机遇

在军用和民用飞机上提供足够的热管理变得越来越具有挑战性。这是由于机载热负荷的量级显着增加,也因为它们的性质不断变化,例如存在更多低品位、高热通量的热源,以及一些废热无法作为热负荷的一部分排出。发动机废气。复合材料使用的增加提出了另一个需要解决的问题,因为这些材料在将废热从飞机转移到周围大气方面不如金属材料有效。这些热管理挑战是如此严峻,以至于它们正成为提高飞机性能和效率的主要障碍之一。在这篇评论中,阐述了这些挑战,以及文献中可能的解决方案和机会。在介绍了周围环境的相关因素之后,对挑战和机遇的讨论以热管理系统中涉及的要素的简单分类为指导。这些要素包括热源、热获取机制、热传输系统、对散热器的排热以及能量转换和存储。热源包括来自推进系统和机身系统的热源。热量获取机制是从来源获取热能的手段。热传输系统包括冷却回路和热力循环,以及它们相关的组件和流体,它们将热量从源头转移到可能很远的地方。终端飞机散热器包括大气、燃料和飞机结构。除了对热管理系统的这些不同元素的讨论之外,还详细讨论了飞机热管理研究中特别优先的几个主题。这些是电气化推进飞机的热管理、超高涵道比齿轮涡轮风扇和高功率机载军事系统;环境控制系统;电源和热管理系统;超音速运输机的热管理;以及用于热管理的新型建模和仿真过程和工具。详细讨论了飞机热管理研究中特别优先的几个主题。这些是电气化推进飞机的热管理、超高涵道比齿轮涡轮风扇和高功率机载军事系统;环境控制系统;电源和热管理系统;超音速运输机的热管理;以及用于热管理的新型建模和仿真过程和工具。详细讨论了飞机热管理研究中特别优先的几个主题。这些是电气化推进飞机的热管理、超高涵道比齿轮涡轮风扇和高功率机载军事系统;环境控制系统;电源和热管理系统;超音速运输机的热管理;以及用于热管理的新型建模和仿真过程和工具。

更新日期:2021-11-13
down
wechat
bug