当前位置: X-MOL 学术Combust. Theory Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design of combustion experiments using differential entropy
Combustion Theory and Modelling ( IF 1.9 ) Pub Date : 2021-11-09 , DOI: 10.1080/13647830.2021.1992506
Éva Valkó 1, 2 , Máté Papp 2 , Márton Kovács 2 , Tamás Varga 2 , István Gy. Zsély 2 , Tibor Nagy 3 , Tamás Turányi 2
Affiliation  

The aim of several combustion experiments is the determination of the rate coefficients of important elementary reactions. The experimental conditions are usually selected on the basis of local sensitivity analysis. Shock tube and tubular flow reactor experiments are often designed in such a way that only one reaction step is important at the investigated conditions. Sheen and Manion (J. Phys. Chem. A, 118 (2014) 4929–4941) suggested a method for the design of shock tube experiments based on differential entropy. Their method was modified and extended in this work. In the extended method, both the experimental and residual errors of the measurements are considered at the calculation of the posterior uncertainty of the determined rate parameters, the differential entropy matrix is calculated in an analytical way and the net information flux value is calculated for each suggested experimental point. In an iterative procedure, all investigated experimental points with negative net information flux values are discarded and the remaining experimental conditions are recommended for the measurements. The most valuable candidate experimental points can be determined based on the net information flux values. The method was used for the selection of experimental conditions for the determination of the rate coefficient of reaction NO2 + H = NO + OH at conditions similar to the tubular flow reactor experiments of Alzueta et al. (Energy Fuels, 15 (2001) 724–729). In these experiments, the oxidation of methanol was investigated with and without NO addition. Our method suggested a range of temperature, equivalence ratio and initial NO concentration, where the experimental data carry the most information on the rate coefficient of this elementary reaction.



中文翻译:

使用微分熵设计燃烧实验

几个燃烧实验的目的是确定重要元素反应的速率系数。实验条件通常根据局部敏感性分析来选择。激波管和管式流动反应器实验通常以这样一种方式设计,即在所研究的条件下只有一个反应步骤是重要的。Sheen 和 Manion ( J. Phys. Chem. A , 118(2014) 4929–4941) 提出了一种基于微分熵的激波管实验设计方法。他们的方法在这项工作中得到了修改和扩展。在扩展方法中,在计算确定的速率参数的后验不确定性时,同时考虑测量的实验误差和残差,以解析的方式计算微分熵矩阵,并计算每个建议的净信息通量值实验点。在迭代过程中,所有具有负净信息通量值的研究实验点都被丢弃,其余的实验条件被推荐用于测量。可以根据净信息通量值确定最有价值的候选实验点。2  + H = NO + OH 在类似于 Alzueta 等人的管式流动反应器实验的条件下。(能源燃料15 (2001) 724–729)。在这些实验中,研究了添加和不添加 NO 的甲醇氧化。我们的方法提出了一个温度范围、当量比和初始 NO 浓度,其中实验数据携带了有关该基本反应速率系数的最多信息。

更新日期:2021-11-09
down
wechat
bug