当前位置: X-MOL 学术Nat. Astron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
State-of-the-art energetic and morphological modelling of the launching site of the M87 jet
Nature Astronomy ( IF 12.9 ) Pub Date : 2021-11-04 , DOI: 10.1038/s41550-021-01506-w
Alejandro Cruz-Osorio 1 , Christian M. Fromm 1, 2, 3 , Yosuke Mizuno 1, 4 , Antonios Nathanail 1, 5 , Luciano Rezzolla 1, 6, 7 , Heino Falcke 3, 8 , Michael Kramer 3, 9 , Ziri Younsi 10 , Oliver Porth 11 , Jordy Davelaar 8, 12, 13
Affiliation  

M87 has been the target of numerous astronomical observations across the electromagnetic spectrum, and very long baseline interferometry has resolved an edge-brightened jet1,2,3,4. However, the origin and formation of its jets remain unclear. In our current understanding, black holes (BH) are the driving engine of jet formation5, and indeed the recent Event Horizon Telescope observations revealed a ring-like structure in agreement with theoretical models of accretion onto a rotating Kerr BH6. In addition to the spin of the BH being a potential source of energy for the launching mechanism, magnetic fields are believed to play a key role in the formation of relativistic jets7,8. A priori, the spin, a, of the BH in M87 is unknown; however, when accounting for the estimates of the X-ray luminosity and jet power, values of \(\left|{a}_{\star }\right|\gtrsim 0.5\) appear favoured6. Besides the properties of the accretion flow and the BH spin, the radiation microphysics including the particle distribution (thermal6 and non-thermal9,10) as well as the particle acceleration mechanism11 play a crucial role. We show that general relativistic magnetohydrodynamic simulations and general relativistic radiative transfer calculations can reproduce the broadband spectrum from the radio to the near-infrared regime and simultaneously match the observed collimation profile of M87, thus allowing us to set rough constraints on the dimensionless spin of M87* to be 0.5 a 1.0, with higher spins being possibly favoured.



中文翻译:

M87喷气式飞机发射场的最先进的能量和形态建模

M87 一直是整个电磁光谱中众多天文观测的目标,并且非常长的基线干涉测量已经解决了边缘增亮的射流1,2,3,4。然而,其喷流的起源和形成仍不清楚。在我们目前的理解中,黑洞 (BH) 是喷流形成的驱动引擎5,事实上,最近的事件视界望远镜观测揭示了一个环状结构,这与吸积到旋转的 Kerr BH 6上的理论模型一致。除了 BH 的自旋是发射机制的潜在能量来源之外,磁场被认为在相对论射流的形成中起关键作用7,8。先验,自旋,a ,在 M87 中的 BH 未知;然而,当考虑到 X 射线光度和射流功率的估计值时,\(\left|{a}_{\star }\right|\gtrsim 0.5\) 的值似乎更受欢迎6。除了吸积流和 BH 自旋的性质外,辐射微物理学包括粒子分布(热6和非热9,10)以及粒子加速机制11起到至关重要的作用。我们表明,广义相对论磁流体动力学模拟和广义相对论辐射传输计算可以再现从无线电到近红外区域的宽带光谱,同时与观测到的 M87 的准直剖面相匹配,从而使我们能够对 M87 的无量纲自旋设置粗略的约束* 为 0.5  a  1.0,可能倾向于更高的旋转。

更新日期:2021-11-04
down
wechat
bug