当前位置: X-MOL 学术Glob. Change Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective
Global Change Biology ( IF 11.6 ) Pub Date : 2021-11-02 , DOI: 10.1111/gcb.15968
Zheng-Rong Kan 1 , Wen-Xuan Liu 1 , Wen-Sheng Liu 1 , Rattan Lal 2 , Yash Pal Dang 3 , Xin Zhao 1 , Hai-Lin Zhang 1
Affiliation  

Mechanisms of soil organic carbon (SOC) stabilization have been widely studied due to their relevance in the global carbon cycle. No-till (NT) has been frequently adopted to sequester SOC; however, limited information is available regarding whether sequestered SOC will be stabilized for long term. Thus, we reviewed the mechanisms affecting SOC stability in NT systems, including the priming effects (PE), molecular structure of SOC, aggregate protection, association with soil minerals, microbial properties, and environmental effects. Although a more steady-state molecular structure of SOC is observed in NT compared with conventional tillage (CT), SOC stability may depend more on physical and chemical protection. On average, NT improves macro-aggregation by 32.7%, and lowers SOC mineralization in macro-aggregates compared with CT. Chemical protection is also important due to the direct adsorption of organic molecules and the enhancement of aggregation by soil minerals. Higher microbial activity in NT could also produce binding agents to promote aggregation and the formation of metal-oxidant organic complexes. Thus, microbial residues could be stabilized in soils over the long term through their attachment to mineral surfaces and entrapment of aggregates under NT. On average, NT reduces SOC mineralization by 18.8% and PE intensities after fresh carbon inputs by 21.0% compared with CT (p < .05). Although higher temperature sensitivity (Q10) is observed in NT due to greater Q10 in macro-aggregates, an increase of soil moisture regime in NT could potentially constrain the improvement of Q10. This review improves process-based understanding of the physical and chemical mechanism of protection that can act, independently or interactively, to enhance SOC preservation. It is concluded that SOC sequestered in NT systems is likely to be stabilized over the long term.

中文翻译:

土壤有机碳稳定性机制及其对免耕的响应:全球综合与展望

土壤有机碳 (SOC) 稳定机制因其在全球碳循环中的相关性而被广泛研究。免耕 (NT) 经常被用来隔离 SOC;然而,关于隔离的 SOC 是否会长期稳定的信息有限。因此,我们回顾了影响 NT 系统中 SOC 稳定性的机制,包括启动效应 (PE)、SOC 的分子结构、聚集体保护、与土壤矿物质的关联、微生物特性和环境影响。尽管与传统耕作 (CT) 相比,在 NT 中观察到更稳定的 SOC 分子结构,但 SOC 稳定性可能更多地取决于物理和化学保护。与 CT 相比,NT 平均提高了 32.7% 的宏观聚集体,并降低了宏观聚集体中的 SOC 矿化。由于有机分子的直接吸附和土壤矿物质的聚集性增强,化学保护也很重要。NT中较高的微生物活性还可以产生粘合剂以促进聚集和金属-氧化剂有机复合物的形成。因此,微生物残留物可以通过附着在矿物表面和在 NT 下截留聚集体而长期稳定在土壤中。与 CT 相比,NT 平均减少 18.8% 的 SOC 矿化和新鲜碳输入后的 PE 强度 21.0%(微生物残留物可以通过附着在矿物表面和在 NT 下截留聚集体而长期稳定在土壤中。与 CT 相比,NT 平均减少 18.8% 的 SOC 矿化和新鲜碳输入后的 PE 强度 21.0%(微生物残留物可以通过附着在矿物表面和在 NT 下截留聚集体而长期稳定在土壤中。与 CT 相比,NT 平均减少 18.8% 的 SOC 矿化和新鲜碳输入后的 PE 强度 21.0%(p  < .05)。尽管在 NT 中观察到更高的温度敏感性 ( Q 10 ) 由于宏观团聚体中的 Q 10 较大,但 NT 中土壤水分状况的增加可能会潜在地限制Q 10改善。本综述提高了对物理和化学保护机制的基于过程的理解,这些保护机制可以独立或交互作用以增强 SOC 保存。结论是,隔离在 NT 系统中的 SOC 很可能在长期内保持稳定。
更新日期:2022-01-05
down
wechat
bug