当前位置: X-MOL 学术Geology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Staged formation of the supergiant Olympic Dam uranium deposit, Australia
Geology ( IF 4.8 ) Pub Date : 2021-11-01 , DOI: 10.1130/g48930.1
Kathy Ehrig 1, 2 , Vadim S. Kamenetsky 2 , Jocelyn McPhie 2 , Edeltraud Macmillan 1 , Jay Thompson 2 , Maya Kamenetsky 2 , Roland Maas 3
Affiliation  

The origins of many supergiant ore deposits remain unresolved because the factors responsible for such extreme metal enrichments are not understood. One factor of critical importance is the timing of mineralization. However, timing information is commonly confounded by the difficulty of dating ore minerals. The world's largest uranium resource at Olympic Dam, South Australia, is exceptional because the high abundance of U allows U-Pb dating of ore minerals. The Olympic Dam U(-Cu-Au-Ag) ore deposit is hosted in ca. 1.59 Ga rocks, and the consensus has been that the supergiant deposit formed at the same time. We argue that, in fact, two stages of mineralization were involved. Paired in situ U-Pb and trace element analyses of texturally distinct uraninite populations show that the supergiant size and highest-U-grade zones are the result of U addition at 0.7–0.5 Ga, at least one billion years after initial formation. This conclusion is supported by a remarkable clustering of thousands of radiogenic 207Pb/206Pb model ages of Cu sulfide grains at this time. Upgrading of the original ca. 1.59 Ga U deposit to its present size at 0.7–0.5 Ga may have resulted from perturbation of regional fluid flow triggered by global climatic (deglaciation) and tectonic (breakup of Rodinia) events.Since the discovery of the supergiant Olympic Dam Cu-U-Au-Ag deposit (South Australia) in 1975, neither its size (e.g., 11.1 Gt of ore, including 2.6 Mt of U3O8; BHP, 2020) nor the diversity of metals and minerals have been adequately explained. Although Olympic Dam is regarded as a type example of an iron oxide–copper–gold deposit (IOCG; Hitzman et al., 1992), fundamental questions regarding metal and fluid sources and age(s) of these sources and related mineralization have remained unanswered, possibly because current thinking links ore formation to a single tectonic-magmatic event, the emplacement of the Gawler silicic large igneous province (LIP) at ca. 1.59 Ga (Johnson and Cross, 1995; Allen et al., 2008; McPhie et al., 2011b; Ciobanu et al., 2013; Cherry et al., 2018; Courtney-Davies et al., 2020).Most of the U at Olympic Dam is present in uraninite, brannerite, and coffinite, whereas the main Cu minerals are chalcopyrite, bornite, and chalcocite (Ehrig et al., 2018, 2012). The U minerals and Cu sulfides are fine grained, disseminated, and closely associated with abundant hematite. These minerals occur within the Olympic Dam Breccia Complex (ODBC; Reeve et al., 1990), which has an area of ~6 km × 3 km (Fig. 1) and thickness in the range 500 m to >1000 m. The ODBC occurs within the undeformed A-type Roxby Downs Granite (1593.87 ± 0.21 Ma; Cherry et al., 2018). The age and contact relationships of the Roxby Downs Granite suggest that it intruded the overlying, broadly comagmatic Gawler Range Volcanics (1594.73 ± 0.30 Ma; Cherry et al., 2018).The most common clast type in the breccia complex is Roxby Downs Granite. The texture, contact relationships, distribution, and non-stratified character of breccias in the ODBC are consistent with subsurface fragmentation of already solid granite involving a combination of tectonic and hydrothermal processes (Oreskes and Einaudi, 1990; Reeve et al., 1990; McPhie et al., 2011a). Large domains in the center of the ODBC also include clasts of the Gawler Range Volcanics and younger bedded clastic facies (1590.97 ± 0.58 Ma; Cherry et al., 2018). Granitoid detritus in the bedded clastic facies was probably derived from the Roxby Downs Granite, requiring partial exhumation of the granite before ca. 1591 Ma (Cherry et al., 2018), most likely during the ~3 m.y. gap between emplacement of the granite and deposition of the bedded clastic facies.Some uraninite in the ODBC was formed ca. 1.59 Ga (e.g., Ciobanu et al., 2013; Macmillan et al., 2016b; Apukhtina et al., 2017), but younger ages have also been recorded (Trueman et al., 1988; Johnson, 1993; Macmillan et al., 2016b). In addition, resource estimates for U and total Pb suggest that the U mineralization in its present form may be larger than it was at 1.59 Ga: U and Pb distributions do not show consistent spatial correlations (Fig. 1), and the U/Pb ratio (by weight) is 4.5, higher than the ratio of 3.8 expected if all U was in place at 1.59 Ga, producing radiogenic Pb in a closed system. Some of the Pb is common and/or thorogenic in origin, which increases the discrepancy. Notably, the highest grades of the U ore have U/Pb ratios >10 (Fig. 2), indicating pronounced Pb deficits in parts of the ODBC (Fig. 1). This relationship suggests that either a large fraction of uranogenic Pb was lost or more U was added long after initial U mineralization at 1.59 Ga. Lead loss would result in complementary radiogenic Pb enrichment elsewhere in the district, but no such Pb repositories have been identified to date. The timing of U deposition is thus critical because current ore-genesis and exploration models do not recognize the possibility of post–1.59 Ga U addition.Uraninite, coffinite, and brannerite contain >85% of the U present and are disseminated in sulfide and gangue minerals (Ehrig et al., 2012); the remaining 15% of U is hosted in other minerals, notably hematite (Oreskes and Einaudi, 1990; Ciobanu et al., 2013). The major textural types of uraninite are (1) euhedral grains <30 μm in size (“class 1 primary uraninite”; Macmillan et al., 2016b) and (2) subhedral to round grains (<30 to ~100 μm), which form larger aggregates and fill veinlets as much as 1 mm wide (Figs. 2 and 3B). The latter are prominent in high-grade ore zones and are equivalent to “class 4 massive uraninite” (Macmillan et al., 2016b).Uranium-lead dating of fine-grained euhedral uraninite yielded ages ca. 1.59 Ga, such as the 1588 ± 4 Ma suite shown in Figure 3A, consistent with other U-Pb ages for fine-grained euhedral uraninite associated with early U mineralization (Macmillan et al., 2016b; Apukhtina et al., 2017). The euhedral uraninite grains have high total rare earth element (REE) contents, relatively unfractionated REE patterns with low Ce/Lu and pronounced La and Eu depletions, and low Y/Ho (Fig. 3B). In contrast, texturally distinct non-euhedral uraninite grains have variably preserved U-Pb ages near 0.5 Ga (532 ± 7 and 474 ± 4 Ma; Fig. 3A), and are characterized by lower total REE contents and REE patterns with very low La/Sm, pronounced peaks at Sm, and a lack of Eu anomalies (Fig. 3B).Since the start of mining at Olympic Dam, assaying of diamond drill core and subsequent resource modeling indicated a deficit of Pb compared to the amount expected in a U deposit formed at 1.59 Ga (“The apparent inconsistency between the pre-mid Proterozoic age of the Olympic Dam copper- uranium- gold mineralization and its overall low lead content…”; Trueman, 1986, p. 2). Our data suggest that mismatched U and Pb abundances in the deposit are best accounted for by at least part of the U having been added late, as late as 1 b.y. after initial formation at ca. 1.59 Ga. The highest U ore grades (>2000 ppm U) are associated with U/Pb ≥ 10, equivalent to “chemical” U-Pb ages <0.7 Ga (Fig. 2). Furthermore, the lack of abundant fission fragments and relatively low inferred neutron fluence in the U ores are more easily reconciled with a Neoproterozoic rather than a Mesoproterozoic U age (Kirchenbaur et al., 2016). These observations are consistent with the presence of the texturally distinct generation of ca. 0.5 Ga uraninite described here (Fig. 3). Uraninite of this age is locally found with partially preserved yet significantly altered remnants of the older (1.59 Ga) euhedral uraninite (Macmillan et al., 2016b), and it dominates the highest U ore grades in the deposit, corroborating the younger “chemical” U-Pb ages (Fig. 2). REE patterns in this uraninite generation, having abundance maxima around Sm-Gd and lacking Eu depletions, are distinct from those in euhedral ca. 1.59 Ga uraninite (Fig. 3B) and resemble REE signatures typical of low-temperature uraninite in the large, high-grade Proterozoic unconformity-related U deposits of Canada and northern Australia (Fryer and Taylor, 1987; Frimmel et al., 2014).Independent evidence for a major U mineralizing event in the late Neoproterozoic to Cambrian is recorded in Pb isotope compositions of hydrothermal Cu sulfides at Olympic Dam. Lead isotope data acquired by laser-ablation inductively coupled plasma mass spectrometry in thousands of chalcopyrite, bornite, and chalcocite grains from across the deposit define trends that record mixing of common Pb with radiogenic Pb characterized by 207Pb/206Pb* in the range 0.07–0.06 (Fig. 4A). U concentrations in these sulfides, including those with highly radiogenic Pb, vary widely, but the vast majority have low U/Pb ratios, implying that radiogenic Pb is “unsupported” (i.e., did not evolve within the low-U sulfide carrier minerals) and inherited from U minerals, a common observation in old U deposits (Gulson and Mizon, 1980; Kister et al., 2004). The timing of production and release of highly radiogenic Pb in U minerals and its capture as “unsupported” radiogenic Pb in Cu sulfides can be constrained using simple modeling with the variables t1 (time of formation of the U mineral), t2 (time of release of radiogenic Pb from the U mineral, i.e., capture in sulfides), and the radiogenic 207Pb/206Pb inferred from isotopic analyses of the Cu sulfides (see also Item S3 in the Supplemental Material1). Varying two of these parameters predicts the third, thus providing model ages that can be compared with other evidence. Unsupported radiogenic Pb with 207Pb/206Pb* of 0.07–0.06 can be produced in U minerals formed in the period 0.9–0.6 Ga if Pb release occurred in the recent geological past (t2 = 0; Fig. 4B). If Pb release occurred earlier, the parental U minerals cannot be older than ca. 0.7 Ga. Destabilization and alteration of U minerals, known from many U deposits (Fayek et al., 1997; Martz et al., 2019), is well documented at Olympic Dam (Macmillan et al., 2016a, 2016b). The remarkably homogeneous and low 207Pb/206Pb* in the Cu sulfide minerals thus implies a major period of U mineral formation at 0.7–0.5 Ga, broadly consistent with the ca. 0.5 Ga ages of non-euhedral uraninite (Fig. 3A). This uraninite population, with its distinct texture and trace element composition (Fig. 3B), could be a remnant or late phase of the U mineralization event(s) preserved in the Pb isotope records of the Cu sulfide minerals. The presence of young ( 1.59 Ga) radiogenic Pb in the sulfides also implies widespread modification of precursor Cu sulfide minerals and perhaps new sulfide mineral growth concomitant with this stage of U mineralization. Renewed hydrothermal activity post–1 Ga is also recorded in other minerals at Olympic Dam (Apukhtina et al., 2020; Maas et al., 2020).Late Neoproterozoic–Cambrian U at Olympic Dam may be linked to global tectonic and climatic events. The ODBC was first exposed prior to deposition of the Mesoproterozoic Pandurra Formation (Cherry et al., 2017) and again prior to deposition of ~350 m of flat-lying Cryogenian and younger sedimentary formations (Drexel et al., 1993). These sedimentary formations were deposited under periglacial conditions during the Marinoan glaciation (Tonkin and Creelman, 1990), part of the global late Neoproterozoic glaciation (Hoffman et al., 2017). The later-stage U at Olympic Dam, broadly constrained here to the period 0.7–0.5 Ga, thus overlapped with Cryogenian glaciation and/or deglaciation and the associated rise in atmospheric oxygen (Lyons et al., 2014). This period also overlaps with the final breakup of the Rodinia supercontinent and early amalgamation of Gondwana (Veevers, 2004; Li et al., 2008). The younger (0.7–0.5 Ga) U mineralization at Olympic Dam may thus have been a result of enhanced mobility of oxidized U in surficial and basinal fluids combined with near-contemporaneous exhumation and shallow burial of the ODBC.Our study challenges the existing paradigm of U mineralization at Olympic Dam being a single event the same age as the ca. 1.59 Ga Gawler silicic LIP host rocks. Rather, the existence of texturally and chemically distinct generations of uraninite and evidence from sulfide Pb isotope compositions indicate that U at Olympic Dam is the result of at least two major stages of U deposition, the first at ca. 1.59 Ga and the second broadly constrained to the period 0.7–0.5 Ga. Supergiant U mineralization at Olympic Dam is thus the result of staged accumulation of U in two episodes a billion years apart.This study was supported by the Australian Research Council Linkage project (grant LP130100438) and BHP Olympic Dam. Jesse Clark and James Taylor are thanked for assistance with the geological map. We are grateful to Liam Courtney-Davies, Kevin Ansdell, and Julio Almeida for insightful reviews and for sharing their knowledge of uranium deposits, and to Marc Norman for editorial handling.

中文翻译:

澳大利亚奥林匹克大坝铀矿床的分阶段形成

许多超大型矿床的起源仍未得到解决,因为导致这种极端金属富集的因素尚不清楚。一个至关重要的因素是矿化的时间。然而,时间信息通常会被矿石矿物测年的困难所混淆。位于南澳大利亚奥林匹克大坝的世界上最大的铀资源是特殊的,因为高丰度的 U 允许对矿石矿物进行 U-Pb 测年。奥林匹克大坝 U(-Cu-Au-Ag) 矿床位于约。1.59 Ga 岩石,一致认为超巨矿床同时形成。我们认为,事实上,涉及两个矿化阶段。对结构不同的铀矿群进行的原位 U-Pb 和微量元素配对分析表明,超巨尺寸和最高 U 品位区域是在初始形成至少 10 亿年后,在 0.7-0.5 Ga 时添加 U 的结果。该结论得到了此时 Cu 硫化物颗粒的数千个放射成因 207Pb/206Pb 模型年龄的显着聚类的支持。升级原来的ca。1.59 Ga U 矿床到现在 0.7-0.5 Ga 的大小可能是由于全球气候(冰川消退)和构造(罗迪尼亚的分裂)事件引发的区域流体流动的扰动造成的。 1975 年的 Au-Ag 矿床(南澳大利亚),其规模(例如,11.1 Gt 矿石,包括 2.6 Mt U3O8;BHP,2020)和金属和矿物的多样性都没有得到充分解释。尽管奥林匹克大坝被认为是氧化铁-铜-金矿床的典型例子(IOCG;Hitzman 等,1992),但关于金属和流体来源以及这些来源的年龄和相关成矿作用的基本问题仍未得到解答,可能是因为目前的想法将矿石形成与单一的构造岩浆事件联系起来,即约 . 1.59 Ga(Johnson 和 Cross,1995 年;Allen 等人,2008 年;McPhie 等人,2011b;Ciobanu 等人,2013 年;Cherry 等人,2018 年;Courtney-Davies 等人,2020 年)。奥林匹克坝上的 U 存在于铀矿、辉绿岩和铜锌矿中,而主要的铜矿物是黄铜矿、斑铜矿和辉铜矿(Ehrig 等人,2018 年,2012 年)。U矿物和Cu硫化物颗粒细小,呈浸染状,与丰富的赤铁矿密切相关。这些矿物存在于奥林匹克坝角砾岩复合体(ODBC;Reeve 等,1990)中,其面积约为 6 km × 3 km(图 1),厚度范围为 500 m 至 >1000 m。ODBC 发生在未变形的 A 型 Roxby Downs 花岗岩中 (1593.87 ± 0.21 Ma;Cherry 等人,2018)。Roxby Downs Granite 的年龄和接触关系表明它侵入了上覆的、广泛昏迷的 Gawler Range Volcanics (1594.73 ± 0.30 Ma; Cherry et al., 2018)。角砾岩复合体中最常见的碎屑类型是 Roxby Downs Granite。ODBC 中角砾岩的质地、接触关系、分布和非分层特征与已经坚固的花岗岩的地下碎裂一致,涉及构造和热液过程的组合(Oreskes 和 Einaudi,1990 年;Reeve 等人,1990 年;McPhie等,2011a)。ODBC 中心的大型区域还包括高勒山脉火山的碎屑和较年轻的层状碎屑相(1590.97 ± 0.58 Ma;Cherry 等,2018)。层状碎屑岩相中的花岗岩碎屑可能来自 Roxby Downs 花岗岩,需要在大约 10 年前对花岗岩进行部分挖掘。1591 Ma (Cherry et al., 2018),最有可能是在花岗岩的侵位和层状碎屑相沉积之间的约 3 米间隙期间。1.59 Ga(例如,Ciobanu 等人,2013 年;Macmillan 等人,2016b;Apukhtina 等人,2017 年),但也记录了更年轻的年龄(Trueman 等人,1988 年;Johnson,1993 年;Macmillan 等人,2017 年)。 , 2016b)。此外,对 U 和总 Pb 的资源估计表明,目前形式的 U 矿化可能大于 1.59 Ga:U 和 Pb 分布没有显示出一致的空间相关性(图 1),U/Pb 比率(按重量计)为 4.5,高于如果所有 U 都在 1.59 Ga 时的预期比率 3.8,在一个封闭的系统。一些铅是常见的和/或起源的,这增加了差异。值得注意的是,最高品位的 U 矿石的 U/Pb 比 >10(图 2),表明 ODBC 的部分区域存在明显的 Pb 缺陷(图 1)。这种关系表明,在 1.59 Ga 的初始 U 矿化之后很长一段时间内,大部分铀成因 Pb 丢失或添加了更多 U。铅损失将导致该地区其他地方的放射性 Pb 补充富集,但尚未确定此类 Pb 储存库日期。U 沉积的时间因此至关重要,因为当前的成矿和勘探模型不承认 1.59 Ga 后 U 添加的可能性。 铀矿、铜镍矿和镁铝榴石包含 > 85% 的 U 存在并散布在硫化物和脉石中矿物(Ehrig 等,2012);其余 15% 的 U 存在于其他矿物中,尤其是赤铁矿(Oreskes 和 Einaudi,1990 年;Ciobanu 等人,2013 年)。铀矿的主要结构类型是 (1) 尺寸 <30 μm 的自形晶粒(“1 级原生铀矿”;Macmillan 等人,2016b)和 (2) 亚自形至圆形晶粒(<30 至 ~100 μm),其形成更大的聚集体并填充细脉宽达 1 毫米(图 2 和 3B)。后者在高品位矿区突出,相当于“4 级块状铀矿”(Macmillan 等,2016b)。细粒自形铀矿的铀铅测年产生的年龄大约为。1.59 Ga,如图 3A 所示的 1588 ± 4 Ma 组,与与早期 U 矿化相关的细粒自形铀矿的其他 U-Pb 年龄一致(Macmillan 等,2016b;Apukhtina 等,2017)。自形铀矿颗粒具有较高的总稀土元素 (REE) 含量,相对未分馏的 REE 模式,具有低 Ce/Lu 和明显的 La 和 Eu 损耗,以及低 Y/Ho(图 3B)。相比之下,结构不同的非自形铀矿颗粒在 0.5 Ga(532 ± 7 和 474 ± 4 Ma;图 3A)附近不同程度地保留了 U-Pb 年龄,其特征在于较低的总 REE 含量和具有极低 La 的 REE 模式/Sm,在 Sm 处有明显的峰值,并且缺乏 Eu 异常(图 3B)。自从奥林匹克大坝开始开采以来,对金刚石钻芯的分析和随后的资源建模表明,与 1.59 Ga 形成的 U 矿床中的预期量相比,Pb 存在不足(“奥林匹克坝铜-铀-金矿化的中元古代与中元古代之间的明显不一致)。其总体铅含量低……”;Trueman,1986 年,第 2 页)。我们的数据表明,矿床中 U 和 Pb 丰度不匹配的最佳原因是,至少有一部分 U 是晚加入的,最晚在大约 1 年的初始形成后 1 年才加入。1.59 Ga。最高的 U 矿石品位 (>2000 ppm U) 与 U/Pb ≥ 10 相关,相当于“化学”U-Pb 年龄 <0.7 Ga(图 2)。此外,U 矿石中缺乏丰富的裂变碎片和相对较低的推断中子注量更容易与新元古代而非中元古代 U 年龄相协调(Kirchenbaur 等,2016)。这些观察结果与存在纹理不同的 ca 相一致。此处描述的 0.5 Ga 铀矿(图 3)。这个时代的铀矿在当地被发现,其中部分保存但显着改变的旧自形铀矿残余物(1.59 Ga)(Macmillan 等,2016b),它在矿床中占据最高的铀矿品位,证实了较年轻的“化学” U-Pb 年龄(图 2)。这代铀矿中的 REE 模式,在 Sm-Gd 周围具有丰度最大值并且缺乏 Eu 消耗,与自形约 . 1.59 Ga 铀矿(图 2)3B) 并且类似于加拿大和澳大利亚北部大型、高品位元古代不整合相关 U 矿床中低温铀矿的典型 REE 特征(Fryer 和 Taylor,1987 年;Frimmel 等人,2014 年)。主要的独立证据奥林匹克大坝热液硫化铜铅同位素组成记录了晚新元古代至寒武纪的铀矿化事件。通过激光烧蚀电感耦合等离子体质谱法在整个矿床的数千个黄铜矿、斑铜矿和辉铜矿颗粒中获得的铅同位素数据定义了记录常见铅与放射性铅混合的趋势,其特征为 207Pb/206Pb*,范围为 0.07-0.06 (图4A)。这些硫化物中的 U 浓度,包括那些具有高放射性铅的硫化物,差异很大,但绝大多数具有较低的 U/Pb 比率,暗示放射性铅是“不受支持的”(即没有在低 U 硫化物载体矿物中演化)并从 U 矿物继承,这是旧 U 矿床中的常见观察结果(Gulson 和 Mizon,1980 年;Kister 等人,2004 年) . 可以使用变量 t1(U 矿物的形成时间)、t2(释放时间)的简单建模来限制 U 矿物中高放射性 Pb 的产生和释放时间及其在 Cu 硫化物中作为“不受支持的”放射性 Pb 捕获的时间来自 U 矿物的放射性 Pb,即在硫化物中捕获),以及从 Cu 硫化物的同位素分析推断的放射性 207Pb/206Pb(另见补充材料 1 中的项目 S3)。改变其中两个参数可以预测第三个参数,从而提供可与其他证据进行比较的模型年龄。不支持的放射性铅,207Pb/206Pb* 为 0.07–0。如果 Pb 释放发生在最近的地质过去(t2 = 0;图 4B),则可以在 0.9-0.6 Ga 时期形成的 U 矿物中生产 06。如果铅释放发生得更早,则母体 U 矿物不能早于大约。0.7 Ga. 许多 U 矿床中已知的 U 矿物的不稳定和蚀变(Fayek 等人,1997 年;Martz 等人,2019 年),在奥林匹克大坝(Macmillan 等人,2016a,2016b)中有详细记录。因此,Cu 硫化物矿物中非常均匀且低的 207Pb/206Pb* 意味着 U 矿物形成的主要时期在 0.7-0.5 Ga,与大约 非自形铀矿的 0.5 Ga 年龄(图 3A)。该铀矿群具有独特的质地和微量元素组成(图 3B),可能是保存在 Cu 硫化物矿物 Pb 同位素记录中的 U 矿化事件的残余或晚期阶段。硫化物中年轻 (1.59 Ga) 放射性铅的存在也意味着前体铜硫化物矿物的广泛改性,以及可能伴随着 U 矿化阶段的新硫化物矿物生长。奥林匹克大坝的其他矿物中也记录了 1 Ga 后更新的热液活动(Apukhtina 等人,2020 年;Maas 等人,2020 年)。奥林匹克大坝的晚新元古代-寒武纪 U 可能与全球构造和气候事件有关。ODBC 在中元古代 Pandurra 地层沉积之前首次暴露(Cherry 等人,2017 年),并在约 350 米的平地低温纪和较年轻沉积地层沉积之前再次暴露(Drexel 等人,1993 年)。这些沉积地层是在 Marinoan 冰川作用期间在冰缘条件下沉积的(Tonkin 和 Creelman,1990),全球晚新元古代冰川作用的一部分(Hoffman 等,2017)。奥林匹克大坝的后期 U 在这里被广泛限制在 0.7-0.5 Ga 时期,因此与低温冰期和/或冰消期以及相关的大气氧气升高重叠(Lyons 等,2014)。这一时期也与 Rodinia 超大陆的最终分裂和冈瓦纳大陆的早期合并重叠(Veevers,2004;Li 等,2008)。因此,Olympic Dam 较年轻的 (0.7-0.5 Ga) U 矿化可能是地表和盆地流体中氧化 U 的流动性增强以及 ODBC 的近同期挖掘和浅埋藏的结果。我们的研究挑战了现有的范式奥林匹克大坝的 U 矿化是与约同龄的单一事件。1.59 Ga Gawler 硅质 LIP 主岩。相当,纹理和化学上不同代铀矿的存在以及硫化物 Pb 同位素组成的证据表明,奥林匹克大坝的 U 是至少两个主要 U 沉积阶段的结果,第一个阶段是约 1.59 Ga 和第二个广泛地限制在 0.7-0.5 Ga 时期。因此,奥林匹克大坝的超巨 U 矿化是 U 分阶段积累的结果,相隔 10 亿年。这项研究得到了澳大利亚研究委员会链接项目的支持(授予 LP130100438)和必和必拓奥林匹克大坝。感谢 Jesse Clark 和 James Taylor 对地质图的帮助。我们感谢 Liam Courtney-Davies、Kevin Ansdell 和 Julio Almeida 的深刻评论和分享他们对铀矿床的知识,感谢 Marc Norman 的编辑处理。
更新日期:2021-11-03
down
wechat
bug