当前位置: X-MOL 学术Proc. Inst. Mech. Eng. E J. Process Mech. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Flow and thermal analysis of Jeffrey nanofluid in a microchannel: Buongiorno's Model
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ( IF 2.3 ) Pub Date : 2021-10-30 , DOI: 10.1177/09544089211050182
D.O. Soumya 1 , B.J. Gireesha 1 , P. Venkatesh 2 , Abdulmohsen Alsaiari 3, 4
Affiliation  

The present consideration explores the thermal energy and mass transfer process in conducting Jeffrey nanofluid flows through a microchannel. The slip boundary conditions, Brownian motion and temperature-dependent thermal conductivity were considered. The dimensionless governing models have been solved to the best possible investigative solutions using the Runge-Kutta-Fehlberg 4 −5th order numerical procedure. The impact of physical parameters on the momentum, energy, concentration, irreversibility and irreversibility ratio was revealed graphically in detail. It is concluded that the resultant momentum profile is augmented with the relaxation and retardation times parameter all over the flow region. The temperature-dependent thermal conductivity contributes to the resulting thermal energy of the flow system ever-growing to high. The concentration profile was diminutions through growing in the Brownian motion parameter. The irreversibility and irreversibility ratio were obtained mathematically and explained concerning the notable parameters. The magnetic parameter was to diminish the irreversibility rate, but it was augmented by increasing the parameter for the relaxation and retardation times ratio. Effect of thermal radiation, variable thermal conductivity, pressure gradient, buoyancy force and thermophoresis on the Jeffery nanofluid in a microchannel by the Buongiorno model have been inspected for the first time. The effects of this works are innovative and original.



中文翻译:

Jeffrey 纳米流体在微通道中的流动和热分析:Buongiorno 模型

目前的考虑探讨了传导 Jeffrey 纳米流体流过微通道的热能和传质过程。考虑了滑动边界条件、布朗运动和温度相关的热导率。已使用 Runge-Kutta-Fehlberg 4 −5 th将无量纲控制模型求解为最佳调查解决方案订购数字程序。以图形方式详细揭示了物理参数对动量、能量、浓度、不可逆性和不可逆比的影响。得出的结论是,所产生的动量分布随着整个流动区域的松弛和延迟时间参数而增加。与温度有关的热导率导致流动系统产生的热能不断增长。浓度分布是通过在布朗运动参数中增长而减少的。不可逆性和不可逆性比率是通过数学方法获得的,并就显着参数进行了解释。磁性参数是为了减少不可逆率,但通过增加弛豫和延迟时间比的参数来增加。Buongiorno 模型首次检测了热辐射、可变热导率、压力梯度、浮力和热泳对微通道中 Jeffery 纳米流体的影响。该作品的效果具有创新性和原创性。

更新日期:2021-10-30
down
wechat
bug