当前位置: X-MOL 学术Agric. For. Meteorol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Response of peat-rich permafrost to a warming climate on the northeast Tibetan Plateau
Agricultural and Forest Meteorology ( IF 6.2 ) Pub Date : 2021-10-26 , DOI: 10.1016/j.agrformet.2021.108681
Ran Du 1 , Xiaoqing Peng 1 , Kang Wang 2 , Oliver W. Frauenfeld 3 , Cong Chen 1 , Wen Sun 1 , Haodong Jin 1 , Yaohua Zhao 1 , Sijia Peng 1 , Benben Liang 1
Affiliation  

Permafrost degradation leads to the release of organic carbon to the atmosphere, and in turn, affects climate change. The amount of organic carbon released to the atmosphere depends on the thawing rate of peat-rich permafrost. However, the exact mechanism of peat-rich permafrost thawing is still unclear. Here we choose two locations on the northeast Tibetan Plateau: the peat-rich EBoTA (“peatland”) site, and the mineral-rich PT5 (“mineral”) site. We use the Geophysical Institute Permafrost Laboratory model to reveal the response of permafrost to warming climate from 1850 to 2100 applying different shared socioeconomic pathways (SSPs). Monthly soil temperature increased during the historical and future periods at both sites, but a slower trend is evident at the peatland site relative to the mineral site. Seasonally, the warming trend is faster in winter than that in summer at both sites. Active layer deepening at the mineral site is 3–12 times that of the peatland site. In addition, permafrost will persist until 2100 in all but one of the SSPs at the peatland site. At the mineral site, all permafrost will degrade to seasonally frozen ground, with only taliks remaining for all future scenarios. These changes indicated a slower response of peat-rich permafrost to climate change, due to peat's low thermal conductivity and high soil moisture. These results could be useful in permafrost carbon studies.



中文翻译:

青藏高原东北部富含泥炭的多年冻土对气候变暖的响应

永久冻土退化导致有机碳释放到大气中,进而影响气候变化。释放到大气中的有机碳量取决于富含泥炭的永久冻土的融化速度。然而,富含泥炭的永久冻土融化的确切机制仍不清楚。在这里,我们选择青藏高原东北部的两个地点:富含泥炭的 EBoTA(“泥炭地”)站点和富含矿物质的 PT5(“矿物”)站点。我们使用地球物理研究所永久冻土实验室模型来揭示永久冻土对 1850 年至 2100 年间气候变暖的响应,应用不同的共享社会经济途径 (SSP)。在两个地点的历史和未来期间,每月土壤温度均升高,但泥炭地地点相对于矿物地点的趋势较慢。季节性地,两个站点的冬季变暖趋势都快于夏季。矿区活动层加深是泥炭地活动层的3-12倍。此外,除了泥炭地地点的一个 SSP 外,所有的永久冻土都将持续到 2100 年。在矿区,所有永久冻土都将退化为季节性冻土,所有未来情景中只剩下 talik。这些变化表明,由于泥炭的低热导率和高土壤湿度,富含泥炭的永久冻土对气候变化的反应较慢。这些结果可用于永久冻土碳研究。所有永久冻土都将退化为季节性冻土,所有未来情景都只剩下 taliks。这些变化表明,由于泥炭的低热导率和高土壤湿度,富含泥炭的永久冻土对气候变化的反应较慢。这些结果可用于永久冻土碳研究。所有永久冻土都将退化为季节性冻土,所有未来情景都只剩下 taliks。这些变化表明,由于泥炭的低热导率和高土壤湿度,富含泥炭的永久冻土对气候变化的反应较慢。这些结果可用于永久冻土碳研究。

更新日期:2021-10-27
down
wechat
bug