当前位置: X-MOL 学术Int. J. Mech. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A reusable metastructure for tri-directional energy dissipation
International Journal of Mechanical Sciences ( IF 7.1 ) Pub Date : 2021-10-25 , DOI: 10.1016/j.ijmecsci.2021.106870
Hongye Ma 1, 2 , Ke Wang 1, 2 , Haifeng Zhao 1, 2 , Ruinan Mu 1, 2 , Bo Yan 1, 3
Affiliation  

Utilizing elastic metamaterials for energy dissipation is a promising research hotspot since it is reusable compared with the plastic material. An innovative, reusable and self-recoverable metastructure (RSRMS) with tetrahedral motif unit cells (TMUCs) for tri-directional energy dissipation is presented in this paper. TMUC, fabricated via 3D printing, mainly composes of a skeleton, six double curved beams, four near-rigid columns, and four caps. The force-displacement relationship of the midpoint of double curved beams is deduced and its criterion for self-recoverability and reusability is investigated. The mechanical model of the proposed RSRMS is established and corresponding snap-through behavior is investigated. The effects of geometric parameters of RSRMS on energy dissipation are systematically studied through numerical simulations, finite element analysis and experimental investigations. The results demonstrate that RSRMS is able to dissipate energy effectively via snap-through induced hysteretic force-displacement behavior and elastic deformation. The efficiency of energy dissipation relies on the number of TMUCs connected in series and the apex height-to-thickness ratio of the double curved beams. Mechanical properties of RSRMS and TMUC are sensitive to the rigidity of supporting skeleton. The proposed RSRMS has potential applications requiring repetitive energy dissipation.



中文翻译:

用于三向能量耗散的可重复使用的元结构

利用弹性超材料进行能量耗散是一个很有前途的研究热点,因为与塑料材料相比,它可以重复使用。本文提出了一种具有四面体基元单元 (TMUC) 的创新、可重复使用和可自我恢复的元结构 (RSRMS),用于三向能量耗散。通过3D打印制造的TMUC主要由骨架、6根双曲梁、4根近刚性柱和4根帽组成。推导了双曲梁中点的力位移关系,研究了其自恢复性和重复使用性的判据。建立了所提出的 RSRMS 的机械模型,并研究了相应的快速通过行为。通过数值模拟系统地研究了RSRMS几何参数对能量耗散的影响,有限元分析和实验研究。结果表明,RSRMS 能够通过快速通过引起的滞后力位移行为和弹性变形有效地耗散能量。能量耗散效率取决于串联的TMUC数量和双曲梁的顶点高厚比。RSRMS和TMUC的力学性能对支撑骨架的刚度很敏感。提议的 RSRMS 具有需要重复能量耗散的潜在应用。能量耗散效率取决于串联的TMUC数量和双曲梁的顶点高厚比。RSRMS和TMUC的力学性能对支撑骨架的刚度很敏感。提议的 RSRMS 具有需要重复能量耗散的潜在应用。能量耗散效率取决于串联的TMUC数量和双曲梁的顶点高厚比。RSRMS和TMUC的力学性能对支撑骨架的刚度很敏感。提议的 RSRMS 具有需要重复能量耗散的潜在应用。

更新日期:2021-11-12
down
wechat
bug