当前位置: X-MOL 学术J. Chem. Theory Comput. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Accurate Biomolecular Structures by the Nano-LEGO Approach: Pick the Bricks and Build Your Geometry
Journal of Chemical Theory and Computation ( IF 5.7 ) Pub Date : 2021-10-20 , DOI: 10.1021/acs.jctc.1c00788
Giorgia Ceselin 1 , Vincenzo Barone 1 , Nicola Tasinato 1
Affiliation  

The determination of accurate equilibrium molecular structures plays a fundamental role for understanding many physical–chemical properties of molecules, ranging from the precise evaluation of the electronic structure to the analysis of the role played by dynamical and environmental effects in tuning their overall behavior. For small semi-rigid systems in the gas phase, state-of-the-art quantum chemical computations rival the most sophisticated experimental (from, for example, high-resolution spectroscopy) results. For larger molecules, more effective computational approaches must be devised. To this end, we have further enlarged the compilation of available semi-experimental (SE) equilibrium structures, now covering the most important fragments containing H, B, C, N, O, F, P, S, and Cl atoms collected in the new SE100 database. Next, comparison with geometries optimized by methods rooted in the density functional theory showed that the already remarkable results delivered by PW6B95 and, especially, rev-DSDPBEP86 functionals can be further improved by a linear regression (LR) approach. Use of template fragments (taken from the SE100 library) together with LR estimates for the missing interfragment parameters paves the route toward accurate structures of large molecules, as witnessed by the very small deviations between computed and experimental rotational constants. The whole approach has been implemented in a user-friendly tool, termed nano-LEGO, and applied to a number of demanding case studies.

中文翻译:

纳米乐高方法的精确生物分子结构:挑选砖块并构建您的几何图形

精确平衡分子结构的确定对于理解分子的许多物理化学性质起着基础性作用,从电子结构的精确评估到动态和环境效应在调整其整体行为中所起的作用的分析。对于气相中的小型半刚性系统,最先进的量子化学计算可以与最复杂的实验(例如,高分辨率光谱学)结果相媲美。对于更大的分子,必须设计更有效的计算方法。为此,我们进一步扩大了可用的半实验 (SE) 平衡结构的汇编,现在涵盖了包含 H、B、C、N、O、F、P、S 和 Cl 原子的最重要片段新的 SE100 数据库。下一个,与通过基于密度泛函理论的方法优化的几何形状进行比较表明,PW6B95 已经提供的显着结果,特别是 rev-DSDPBEP86 泛函可以通过线性回归 (LR) 方法进一步改进。使用模板片段(取自 SE100 库)以及对缺失的片段间参数的 LR 估计为大分子的精确结构铺平了道路,正如计算和实验旋转常数之间的非常小的偏差所证明的那样。整个方法已在名为 nano-LEGO 的用户友好工具中实施,并应用于许多要求苛刻的案例研究。rev-DSDPBEP86 函数可以通过线性回归 (LR) 方法进一步改进。使用模板片段(取自 SE100 库)以及对缺失的片段间参数的 LR 估计为大分子的精确结构铺平了道路,正如计算和实验旋转常数之间的非常小的偏差所证明的那样。整个方法已在名为 nano-LEGO 的用户友好工具中实施,并应用于许多要求苛刻的案例研究。rev-DSDPBEP86 函数可以通过线性回归 (LR) 方法进一步改进。使用模板片段(取自 SE100 库)以及对缺失的片段间参数的 LR 估计为大分子的精确结构铺平了道路,正如计算和实验旋转常数之间的非常小的偏差所证明的那样。整个方法已在名为 nano-LEGO 的用户友好工具中实施,并应用于许多要求苛刻的案例研究。
更新日期:2021-11-09
down
wechat
bug