当前位置: X-MOL 学术Electrochim. Acta › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical performance of manganese hexacyanoferrate cathode material in aqueous Zn-ion battery
Electrochimica Acta ( IF 5.5 ) Pub Date : 2021-10-20 , DOI: 10.1016/j.electacta.2021.139414
Min Li 1 , Rosalinda Sciacca 2 , Mariam Maisuradze 1 , Giuliana Aquilanti 3 , Jasper Plaisier 3 , Mario Berrettoni 4 , Marco Giorgetti 1
Affiliation  

Manganese hexacyanoferrate (MnHCF) has attracted much attention as promising cathode material for Li and Na ion batteries, owning to its low cost, environmental friendliness, high specific capacity and voltage plateau. Here, the electrochemical performance and electronic structure information of MnHCF were studied in aqueous Zn-ion batteries (ZIBs). Based on the cyclic voltammetry and galvanostatic charge/discharge results, an activation of Fe-sites during beginning cycles was observed, and the capacity contribution of Fe-sites increases from 30 to 86% at C/20 during the first 10 cycles. The local geometric and electronic structure information of MnHCF was investigated by X-ray absorption spectroscopy (XAS) in a set of ex-situ electrodes. From Fe K-edge spectra, it shows a consistent oxidation and reduced state in charged and discharged electrodes, and this indicates that there is no apparent change for the local Fe-sites environment. However, the XAS spectra of Mn K-edge show apparent change after 10 cycles. Compared to the rhombohedral phase of Zinc hexacyanoferrate (ZnHCF), a -Zn-CN-Fe- structural framework was detected in the cycled MnHCF samples, and this indicates that a part of Zn replaced Mn-sites, because of the dissolution of the Mn-sites. The gradual activation of Fe-sites at the beginning cycles can be attributed to the alleviation spatial resistance with the dissolution of Mn-sites, and the replacement of Zn for Mn explains the decreasing capacity during cycling.



中文翻译:

六氰基铁酸锰正极材料在水系锌离子电池中的电化学性能

六氰基铁酸锰(MnHCF)由于其低成本、环保、高比容量和电压平台,作为锂和钠离子电池的有前途的正极材料而备受关注。在这里,在水性锌离子电池(ZIBs)中研究了 MnHCF 的电化学性能和电子结构信息。根据循环伏安法和恒电流充/放电结果,观察到 Fe 位点在开始循环期间的活化,并且在前 10 次循环期间,Fe 位点的容量贡献在 C/20 时从 30% 增加到 86%。MnHCF 的局部几何和电子结构信息通过 X 射线吸收光谱 (XAS) 在一组异位电极中进行研究。从 Fe K 边缘光谱来看,它在充电和放电电极中显示出一致的氧化和还原状态,这表明局部 Fe 位点环境没有明显变化。然而,Mn K 边缘的 XAS 光谱在 10 次循环后显示出明显的变化。与六氰基铁酸锌 (ZnHCF) 的菱形相相比,在循环的 MnHCF 样品中检测到 -Zn-CN-Fe- 结构骨架,这表明部分 Zn 取代了 Mn 位点,因为 Mn 的溶解-站点。Fe 位点在循环开始时的逐渐活化可归因于 Mn 位点溶解的空间电阻的减轻,而 Zn 替代 Mn 解释了循环过程中容量的下降。与六氰基铁酸锌 (ZnHCF) 的菱形相相比,在循环的 MnHCF 样品中检测到 -Zn-CN-Fe- 结构骨架,这表明部分 Zn 取代了 Mn 位点,因为 Mn 的溶解-站点。Fe 位点在循环开始时的逐渐活化可归因于 Mn 位点溶解的空间电阻的减轻,而 Zn 替代 Mn 解释了循环过程中容量的下降。与六氰基铁酸锌 (ZnHCF) 的菱形相相比,在循环的 MnHCF 样品中检测到 -Zn-CN-Fe- 结构骨架,这表明部分 Zn 取代了 Mn 位点,因为 Mn 的溶解-站点。Fe 位点在循环开始时的逐渐活化可归因于 Mn 位点溶解的空间电阻的减轻,而 Zn 替代 Mn 解释了循环过程中容量的下降。

更新日期:2021-10-28
down
wechat
bug