当前位置: X-MOL 学术Metab. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rewiring cyanobacterial photosynthesis by the implementation of an oxygen-tolerant hydrogenase
Metabolic Engineering ( IF 6.8 ) Pub Date : 2021-10-18 , DOI: 10.1016/j.ymben.2021.10.006
Sara Lupacchini 1 , Jens Appel 2 , Ron Stauder 1 , Paul Bolay 1 , Stephan Klähn 1 , Elisabeth Lettau 3 , Lorenz Adrian 4 , Lars Lauterbach 5 , Bruno Bühler 1 , Andreas Schmid 1 , Jörg Toepel 1
Affiliation  

Molecular hydrogen (H2) is considered as an ideal energy carrier to replace fossil fuels in future. Biotechnological H2 production driven by oxygenic photosynthesis appears highly promising, as biocatalyst and H2 syntheses rely mainly on light, water, and CO2 and not on rare metals. This biological process requires coupling of the photosynthetic water oxidizing apparatus to a H2-producing hydrogenase. However, this strategy is impeded by the simultaneous release of oxygen (O2) which is a strong inhibitor of most hydrogenases. Here, we addressed this challenge, by the introduction of an O2-tolerant hydrogenase into phototrophic bacteria, namely the cyanobacterial model strain Synechocystis sp. PCC 6803. To this end, the gene cluster encoding the soluble, O2-tolerant, and NAD(H)-dependent hydrogenase from Ralstonia eutropha (ReSH) was functionally transferred to a Synechocystis strain featuring a knockout of the native O2 sensitive hydrogenase. Intriguingly, photosynthetically active cells produced the O2 tolerant ReSH, and activity was confirmed in vitro and in vivo. Further, ReSH enabled the constructed strain Syn_ReSH+ to utilize H2 as sole electron source to fix CO2. Syn_ReSH+ also was able to produce H2 under dark fermentative conditions as well as in presence of light, under conditions fostering intracellular NADH excess. These findings highlight a high level of interconnection between ReSH and cyanobacterial redox metabolism. This study lays a foundation for further engineering, e.g., of electron transfer to ReSH via NADPH or ferredoxin, to finally enable photosynthesis-driven H2 production.



中文翻译:

通过实施耐氧氢化酶重新连接蓝藻光合作用

分子氢(H 2)被认为是未来替代化石燃料的理想能源载体。由含氧光合作用驱动的生物技术 H 2生产看起来很有前景,因为生物催化剂和 H 2合成主要依赖光、水和 CO 2而不是稀有金属。该生物过程需要将光合水氧化装置与产生 H 2 的氢化酶偶联。然而,该策略受到氧(O 2)的同时释放的阻碍,氧是大多数氢化酶的强抑制剂。在这里,我们通过引入 O 2耐受氢化酶转化为光养细菌,即蓝藻模型菌株集胞藻。PCC 6803。为此,编码来自真养产碱菌( Re SH)的可溶性、O 2耐受性和 NAD(H) 依赖性氢化酶的基因簇被功能性转移到具有敲除天然 O 2敏感性的集胞藻菌株。氢化酶。有趣的是,光合活性细胞产生了 O 2耐受性Re SH,其活性在体外体内得到证实。此外,Re SH 启用了构建的应变Syn_ReSH + 利用H 2作为唯一的电子源来固定CO 2SYN _重新SH + 也能生成H 2暗发酵的条件下,以及在光的存在下,培养细胞内NADH过量的条件下。这些发现强调了Re SH 和蓝藻氧化还原代谢之间的高度联系。该研究为进一步工程奠定了基础,例如通过 NADPH 或铁氧还蛋白将电子转移到Re SH,最终实现光合作用驱动的 H 2生产。

更新日期:2021-10-24
down
wechat
bug