当前位置: X-MOL 学术Phys. Rev. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Earth as a transducer for dark-photon dark-matter detection
Physical Review D ( IF 4.6 ) Pub Date : 2021-10-19 , DOI: 10.1103/physrevd.104.075023
Michael A. Fedderke 1, 2 , Peter W. Graham 2 , Derek F. Jackson Kimball 3 , Saarik Kalia 2
Affiliation  

We propose the use of the Earth as a transducer for ultralight dark-matter detection. In particular, we point out a novel signal of kinetically mixed dark-photon dark matter: a monochromatic oscillating magnetic field generated at the surface of the Earth. Similar to the signal in a laboratory experiment in a shielded box (or cavity), this signal arises because the lower atmosphere is a low-conductivity air gap sandwiched between the highly conductive interior of the Earth below and ionosphere or interplanetary medium above. At low masses (frequencies) the signal in a laboratory detector is usually suppressed by the size of the detector multiplied by the dark-matter mass. Crucially, in our case the suppression is by the radius of the Earth, and not by the (much smaller) height of the atmosphere. We compute the size and global vectorial pattern of our magnetic field signal, which enables sensitive searches for this signal using unshielded magnetometers dispersed over the surface of the Earth. In principle, the signal we compute exists for any dark photon in the mass range 1021eVmA3×1014eV. We summarize the results of our companion paper [M. A. Fedderke et al., Search for dark-photon dark matter in the SuperMAG geomagnetic field dataset, arXiv:2108.08852], in which we detail such a search using a publicly available dataset from the SuperMAG Collaboration: we report no robust signal candidates and so place constraints in the (more limited) dark-photon dark-matter mass range 2×1018eVmA7×1017eV (corresponding to frequencies 6×104Hzf2×102Hz). These constraints are complementary to existing astrophysical bounds. Future searches for this signal may improve the sensitivity over a wide range of ultralight dark-matter candidates and masses.

中文翻译:

地球作为暗光子暗物质探测的换能器

我们建议使用地球作为超轻暗物质探测的换能器。我们特别指出了一种动力学混合暗光子暗物质的新信号:在地球表面产生的单色振荡磁场。类似于在屏蔽盒(或腔体)中进行的实验室实验中的信号,该信号的产生是因为低层大气是夹在下方地球高导电性内部和上方的电离层或行星际介质之间的低电导率气隙。在低质量(频率)下,实验室检测器中的信号通常被检测器尺寸乘以暗物质质量所抑制。至关重要的是,在我们的例子中,抑制是由地球的半径决定的,而不是由(小得多)大气层的高度决定的。我们计算我们的磁场信号的大小和全局矢量模式,这可以使用分散在地球表面的未屏蔽磁力计对该信号进行敏感搜索。原则上,我们计算的信号对于质量范围内的任何暗光子都存在10-21电动汽车一种3×10-14电动汽车. 我们总结了我们的配套论文 [M. A. Fedderke等人。, 在 SuperMAG 地磁场数据集 arXiv:2108.08852 中搜索暗光子暗物质],其中我们使用来自 SuperMAG 合作的公开可用数据集详细说明了这样的搜索:我们报告没有稳健的信号候选者,因此在 (更有限的)暗光子暗物质质量范围2×10-18电动汽车一种7×10-17电动汽车 (对应频率 6×10-4赫兹F2×10-2赫兹)。这些限制是对现有天体物理界限的补充。未来对该信号的搜索可能会提高对各种超轻暗物质候选物和质量的灵敏度。
更新日期:2021-10-19
down
wechat
bug