当前位置: X-MOL 学术Phys. Rev. D › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Cosmology with Love: Measuring the Hubble constant using neutron star universal relations
Physical Review D ( IF 4.6 ) Pub Date : 2021-10-19 , DOI: 10.1103/physrevd.104.083528
Deep Chatterjee 1, 2 , Abhishek Hegade K. R. 2 , Gilbert Holder 2, 3 , Daniel E. Holz 4 , Scott Perkins 2 , Kent Yagi 5 , Nicolás Yunes 2
Affiliation  

Gravitational-wave cosmology began in 2017 with the observation of the gravitational waves emitted in the merger of two neutron stars, and the coincident observation of the electromagnetic emission that followed. Although only a 30% measurement of the Hubble constant was achieved, future observations may yield more precise measurements either through other coincident events or through cross correlation of gravitational-wave events with galaxy catalogs. Here, we implement a new way to measure the Hubble constant without an electromagnetic counterpart and through the use of the binary-Love relations. These relations govern the tidal deformabilities of neutron stars in an equation of state insensitive way. Importantly, the Love relations depend on the component masses of the binary in the source frame. Since the gravitational-wave phase and amplitude depend on the chirp mass in the observer (and hence redshifted) frame, one can in principle combine the binary-Love relations with the gravitational-wave data to directly measure the redshift, and thereby infer the value of the Hubble constant. We implement this approach in both real and synthetic data through a Bayesian parameter estimation study in a range of observing scenarios. We find that for the LIGO/Virgo/KAGRA design sensitivity era, this method results in a similar measurement accuracy of the Hubble constant to those of current-day, dark-siren measurements. For third-generation detectors, this accuracy improves to 10% when combining measurements from binary neutron star events in the LIGO Voyager era, and to 2% in the Cosmic Explorer era.

中文翻译:

爱的宇宙学:使用中子星普遍关系测量哈勃常数

引力波宇宙学始于 2017 年,当时观测到两颗中子星合并时发出的引力波,以及随后对电磁辐射的巧合观测。虽然哈勃常数只得到了 30% 的测量结果,但未来的观测可能会通过其他重合事件或通过引力波事件与星系目录的互相关产生更精确的测量结果。在这里,我们实现了一种新的方法来测量哈勃常数,无需电磁对应物,并通过使用二元爱关系。这些关系以状态方程不敏感的方式控制中子星的潮汐变形能力。重要的是,Love 关系取决于源帧中二进制的组件质量。由于引力波相位和振幅取决于观察者(因此红移)坐标系中的啁啾质量,原则上可以将二元洛夫关系与引力波数据结合起来直接测量红移,从而推断出值哈勃常数。我们通过一系列观察场景中的贝叶斯参数估计研究在真实和合成数据中实施这种方法。我们发现,对于 LIGO/Virgo/KAGRA 设计灵敏度时代,这种方法导致哈勃常数的测量精度与当今的暗警报测量精度相似。对于第三代探测器,这种精度提高到 原则上可以将二元洛夫关系与引力波数据结合起来直接测量红移,从而推断出哈勃常数的值。我们通过一系列观察场景中的贝叶斯参数估计研究在真实和合成数据中实施这种方法。我们发现,对于 LIGO/Virgo/KAGRA 设计灵敏度时代,这种方法导致哈勃常数的测量精度与当今的暗警报测量精度相似。对于第三代探测器,这种精度提高到 原则上可以将二元洛夫关系与引力波数据结合起来直接测量红移,从而推断出哈勃常数的值。我们通过一系列观察场景中的贝叶斯参数估计研究在真实和合成数据中实施这种方法。我们发现,对于 LIGO/Virgo/KAGRA 设计灵敏度时代,这种方法导致哈勃常数的测量精度与当今的暗警报测量精度相似。对于第三代探测器,这种精度提高到 这种方法导致哈勃常数的测量精度与当今的暗警报测量精度相似。对于第三代探测器,这种精度提高到 这种方法导致哈勃常数的测量精度与当今的暗警报测量精度相似。对于第三代探测器,这种精度提高到10% 当结合 LIGO Voyager 时代双中子星事件的测量结果时, 2% 在宇宙探索者时代。
更新日期:2021-10-19
down
wechat
bug