当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Programmable Zwitterionic Droplets as Biomolecular Sorters and Model of Membraneless Organelles
Advanced Materials ( IF 27.4 ) Pub Date : 2021-10-19 , DOI: 10.1002/adma.202104837
Umberto Capasso Palmiero 1 , Carolina Paganini 1 , Marie R G Kopp 1 , Miriam Linsenmeier 1 , Andreas M Küffner 1 , Paolo Arosio 1
Affiliation  

Increasing evidence indicates that cells can regulate biochemical functions in time and space by generating membraneless compartments with well-defined mesoscopic properties. One important mechanism underlying this control is simple coacervation driven by associative disordered proteins that encode multivalent interactions. Inspired by these observations, programmable droplets based on simple coacervation of responsive synthetic polymers that mimic the “stickers-and-spacers” architecture of biological disordered proteins are developed. Zwitterionic polymers that undergo an enthalpy-driven liquid–liquid phase separation process and form liquid droplets that remarkably exclude most molecules are developed. Starting from this reference material, different functional groups in the zwitterionic polymer are progressively added to encode an increasing number of different intermolecular interactions. This strategy allowed the multiple emerging properties of the droplets to be controlled independently, such as stimulus-responsiveness, polarity, selective uptake of client molecules, fusion times, and miscibility. By exploiting this high programmability, a model of cellular compartmentalization is reproduced and droplets capable of confining different molecules in space without physical barriers are generated. Moreover, these biomolecular sorters are demonstrated to be able to localize, separate, and enable the detection of target molecules even within complex mixtures, opening attractive applications in bioseparation, and diagnostics.

中文翻译:

作为生物分子分选器和无膜细胞器模型的可编程两性离子液滴

越来越多的证据表明,细胞可以通过产生具有明确介观特性的无膜隔室来调节时间和空间的生化功能。这种控制的一个重要机制是由编码多价相互作用的相关无序蛋白质驱动的简单凝聚。受这些观察的启发,开发了基于响应性合成聚合物的简单凝聚的可编程液滴,这些聚合物模拟了生物无序蛋白质的“贴纸和间隔物”结构。两性离子聚合物经过焓驱动的液-液相分离过程并形成显着排除大多数分子的液滴被开发出来。从这个参考资料开始,两性离子聚合物中的不同官能团逐渐添加以编码越来越多的不同分子间相互作用。这种策略允许独立控制液滴的多种新兴特性,例如刺激响应性、极性、客户分子的选择性摄取、融合时间和混溶性。通过利用这种高度可编程性,复制了细胞划分模型,并生成了能够将不同分子限制在空间中而没有物理障碍的液滴。此外,这些生物分子分选仪被证明能够定位、分离和检测目标分子,即使是在复杂的混合物中,也能在生物分离和诊断中开辟有吸引力的应用。这种策略允许独立控制液滴的多种新兴特性,例如刺激响应性、极性、客户分子的选择性摄取、融合时间和混溶性。通过利用这种高度可编程性,复制了细胞划分模型,并生成了能够将不同分子限制在空间中而没有物理障碍的液滴。此外,这些生物分子分选仪被证明能够定位、分离和检测目标分子,即使是在复杂的混合物中,也能在生物分离和诊断中开辟有吸引力的应用。这种策略允许独立控制液滴的多种新兴特性,例如刺激响应性、极性、客户分子的选择性摄取、融合时间和混溶性。通过利用这种高度可编程性,复制了细胞划分模型,并生成了能够将不同分子限制在空间中而没有物理障碍的液滴。此外,这些生物分子分选仪被证明能够定位、分离和检测目标分子,即使是在复杂的混合物中,也能在生物分离和诊断中开辟有吸引力的应用。通过利用这种高度可编程性,复制了细胞划分模型,并生成了能够将不同分子限制在空间中而没有物理障碍的液滴。此外,这些生物分子分选仪被证明能够定位、分离和检测目标分子,即使是在复杂的混合物中,也能在生物分离和诊断中开辟有吸引力的应用。通过利用这种高度可编程性,复制了细胞划分模型,并生成了能够将不同分子限制在空间中而没有物理障碍的液滴。此外,这些生物分子分选仪被证明能够定位、分离和检测目标分子,即使是在复杂的混合物中,也能在生物分离和诊断中开辟有吸引力的应用。
更新日期:2021-10-19
down
wechat
bug