当前位置: X-MOL 学术ACS Energy Lett. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental Protocols for Studying Organic Non-aqueous Redox Flow Batteries
ACS Energy Letters ( IF 19.3 ) Pub Date : 2021-10-18 , DOI: 10.1021/acsenergylett.1c01675
Min Li 1, 2 , Susan A. Odom 2, 3 , Adam R. Pancoast 1, 2 , Lily A. Robertson 2, 4 , Thomas P. Vaid 2, 5 , Garvit Agarwal 2, 6 , Hieu A. Doan 2, 6 , Yilin Wang 2, 7 , T. Malsha Suduwella 2, 3 , Sambasiva R. Bheemireddy 2, 4 , Randy H. Ewoldt 2, 7 , Rajeev S. Assary 2, 6 , Lu Zhang 2, 4 , Matthew S. Sigman 1, 2 , Shelley D. Minteer 1, 2
Affiliation  

Figure 1. Schematic illustration of a redox flow battery. Anode and cathode materials are dissolved in solvents containing supporting electrolytes to form redox-active solutions called anolyte and catholyte, respectively. A membrane is incorporated between the two half-cells to impede crossover of ROMs, while allowing transport of ions from supporting electrolytes to maintain charge balance. Pumps are used to flow the electroactive solutions between the electrochemical cells and the storage tanks. Figure 2. Predicted properties obtained by DFT and MD simulations. Figure 3. Schematic illustration of reversibility by CV. ΔEp,rev = 59/n mV, ΔEp,rev < ΔEp,quasi ≤ 200/n mV, ΔEp,irrev > 200/n mV, where n is the number of electrons transferred in redox reaction. Reproduced with permission from ref (35). Copyright 2020 American Chemical Society. Figure 4. Illustration of using a H-cell for crossover. The inset shows the setup of the H-cell. Cyclopropenium (CP) oligomers (monomer 1, dimer 4-Di, trimer 4-Tri, and tetramer 4-Tet) were applied through a cross-linked polymer of intrinsic microporosity (PIM-1) membrane. the dashed line stands for the experimental detection limit; the graph inset indicates the calculated effective diffusion coefficients corrected for diffusion in solution. Adapted with permission from ref (39). Copyright 2018 American Chemical Society. Figure 5. UV–vis spectra of the products of the reaction of the chemical oxidant magic blue with solutions of iPrPT (top) and tBuPT (bottom) at 0, 1, 2, and 5 h after generation in dichloromethane at 1.6 × 10–4 M. Reproduced with permission from ref (66). Copyright 2015 John Wiley & Sons, Inc. Figure 6. EPR spectra of dichloromethane solutions of tBuPT and PT generated at 1.6 × 10–4 M after treatment with the chemical oxidant magic blue at about 1 min after mixing (tBuPT, a; PT, c) and about 10 min after mixing (tBuPT, b; PT, d). Reproduced with permission from ref (66). Copyright 2015 John Wiley & Sons, Inc. Figure 7. Representation of an asymmetric cell (a) and symmetric cells (b–d). In the asymmetric cell, the charging process moves an electron from the catholyte to the anolyte. In the symmetric cell (b), here shown for a catholyte (or anolyte) material, the charging process moves an electron from the neutral form to the cation. This cell stores no energy. In the symmetric cell (c), the electroactive cores of catholyte and anolyte are covalently linked into one single structure, while in the symmetric cell (d), a 1:1 molar ratio of catholyte and anolyte materials is physically mixed. Figure 8. Cyclic voltammograms of the anolyte electrolyte solution before (dashed) and after (solid) cycling of a N-RFB, indicating a diminished concentration of anolyte ROM and crossover of the catholyte ROM during cycling. Adapted with permission from ref (73). Copyright 2020 John Wiley & Sons, Inc. Figure 9. Schematic illustration of the in situ NMR devices. (a) The in situ NMR setup for monitoring one redox-active component. (b) Integration of flow cells with NMR probe for real-time analysis of the battery charging/discharging process. Reproduced with permission from ref (77). Copyright 2020 Nature. The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsenergylett.1c01675.
  • Detailed methods for drying and purification of organic solvents and supporting electrolytes, solubility measurements, and case studies for flow cell testing (PDF)
Detailed methods for drying and purification of organic solvents and supporting electrolytes, solubility measurements, and case studies for flow cell testing (PDF) Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html. The research was financially supported by the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. This article references 78 other publications.


中文翻译:

研究有机非水氧化还原液流电池的实验方案

图 1. 氧化还原液流电池示意图。阳极和阴极材料溶解在含有支持电解质的溶剂中,分别形成称为阳极电解液和阴极电解液的氧化还原活性溶液。在两个半电池之间加入膜以阻止 ROM 的交叉,同时允许从支持电解质中传输离子以保持电荷平衡。泵用于在电化学电池和储罐之间流动电活性溶液。图 2. 通过 DFT 和 MD 模拟获得的预测特性。图 3. CV 可逆性示意图。Δ E p,rev = 59/n mV, Δ E p,rev < Δ E p,quasi ≤ 200/ n mV, Δ Ep,irrev > 200/ n mV,其中n是氧化还原反应中转移的电子数。经参考文献 (35) 许可转载。版权所有 2020 美国化学学会。图 4. 使用 H-cell 进行交叉的图示。插图显示了 H 细胞的设置。环丙烯 (CP) 低聚物(单体1、二聚体4-Di、三聚体4-Tri和四聚体4-Tet) 通过固有微孔 (PIM-1) 膜的交联聚合物施加。虚线代表实验检测限;图表插图表示针对溶液中的扩散校正的计算有效扩散系数。经参考文献 (39) 许可改编。版权所有 2018 美国化学学会。图 5. 化学氧化剂魔蓝与 iPrPT(顶部)和 tBuPT(底部)溶液在 0、1、2 和 5 小时后在 1.6 × 10 的二氯甲烷中反应的产物的紫外-可见光谱– 4 M. 经参考文献 (66) 许可转载。版权所有 2015 John Wiley & Sons, Inc. 图 6. tBuPT 和 PT 二氯甲烷溶液的 EPR 光谱在 1.6 × 10 –4 下生成混合后约 1 分钟(tBuPT,a;PT,c)和混合后约 10 分钟(tBuPT,b;PT,d)用化学氧化剂魔蓝处理后的 M。经参考文献 (66) 许可转载。版权所有 2015 John Wiley & Sons, Inc. 图 7. 非对称单元 (a) 和对称单元 (b–d) 的表示。在不对称电池中,充电过程将电子从阴极电解液移动到阳极电解液。在对称电池 (b) 中,此处显示的是阴极电解液(或阳极电解液)材料,充电过程将电子从中性形式移动到阳离子。这个细胞不储存能量。在对称电池 (c) 中,阴极电解液和阳极电解液的电活性核共价连接成一个单一结构,而在对称电池 (d) 中,阴极电解液和阳极电解液材料的摩尔比为 1:1 物理混合。图 8。N-RFB 循环之前(虚线)和之后(实线)的阳极电解液电解质溶液的循环伏安图,表明循环过程中阳极电解液 ROM 的浓度降低和阴极电解液 ROM 的交叉。经参考文献 (73) 许可改编。版权所有 2020 John Wiley & Sons, Inc. 图 9. 示意图原位核磁共振装置。(a)用于监测一种氧化还原活性成分的原位NMR 设置。(b) 流通池与 NMR 探针的集成,用于电池充电/放电过程的实时分析。经参考文献 (77) 许可转载。版权所有 2020 自然。支持信息可在 https://pubs.acs.org/doi/10.1021/acsenergylett.1c01675 免费获取。
  • 用于干燥和纯化有机溶剂和支持电解质的详细方法、溶解度测量以及流通池测试案例研究 (PDF)
用于干燥和纯化有机溶剂和支持电解质的详细方法、溶解度测量以及流通池测试案例研究 (PDF) 大多数电子支持信息文件无需订阅 ACS 网络版本即可获得。此类文件可以按文章下载用于研究用途(如果相关文章有公共使用许可,则该许可可能允许其他用途)。可以通过 RightsLink 许可系统的请求从 ACS 获得许可用于其他用途:http://pubs.acs.org/page/copyright/permissions.html。该研究得到了储能研究联合中心 (JCESR) 的资助,该中心是一个由美国能源部、基础能源科学办公室资助的能源创新中心。提交的手稿由 UChicago Argonne, LLC 创建,阿贡国家实验室(“阿贡”)的运营商。Argonne 是美国能源部科学办公室实验室,根据合同号 DE-AC02-06CH11357 运营。美国政府为自己和代表其行事的其他人保留在上述文章中已付清的非排他性、不可撤销的全球许可,以复制、准备衍生作品、向公众分发副本以及公开表演和公开展示,由或代表政府的。本文引用了 78 篇其他出版物。由政府或代表政府准备衍生作品、向公众分发副本、公开表演和公开展示。本文引用了 78 篇其他出版物。由政府或代表政府准备衍生作品、向公众分发副本、公开表演和公开展示。本文引用了 78 篇其他出版物。
更新日期:2021-11-12
down
wechat
bug