当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering Mesopore Formation in Hierarchical Zeolites under High Hydrostatic Pressure
Chemistry of Materials ( IF 7.2 ) Pub Date : 2021-10-18 , DOI: 10.1021/acs.chemmater.1c02800
Riku Sato 1 , Zhendong Liu 1, 2 , Ce Peng 1 , Che Tan 1 , Peidong Hu 1 , Jie Zhu 1 , Masamori Takemura 1 , Yasuo Yonezawa 1 , Hiroki Yamada 3, 4 , Akira Endo 3 , Javier García-Martínez 5 , Tatsuya Okubo 1 , Toru Wakihara 1, 2
Affiliation  

Tailoring the textural properties of porous materials is of paramount importance to optimize their performance in a variety of applications. To this end, critical synthesis parameters influencing crystallization and reorganization of porous materials need to be identified and judiciously controlled. Although the effect of pressure on chemical transformations is ubiquitously present, its impact on fabricating porous materials with tailored physicochemical properties remains unexplored and its potential untapped. In this work, we disclose a detailed study on the effects of high hydrostatic pressure on the formation of well-controlled intracrystalline mesopores in ultrastable Y (USY) zeolite by the so-called surfactant-templating method. The rate of mesopore formation significantly increases upon elevating the pressure, whereas the average size of the mesopores─directed by the self-assembly of the surfactant─decreases. By simultaneously adjusting the external pressure and selecting surfactants of different lengths, we have been able to precisely control the mesopore size in the USY zeolite. Our findings clearly show that external hydrostatic pressure can be used to both accelerate mesopore formation and engineer their size with subnanometer precision. As a second example, we investigated the effect of external pressure on the synthesis of MCM-41. The results on MCM-41, consistent with our observations on the USY zeolite, further confirm that the use of high external pressure greatly affects the self-assembly behaviors of the amphiphilic molecules involved in the synthesis/modification of the porous materials. Our results show that the high-pressure approach represents an untapped opportunity for synthesis/modification of functional porous materials that will likely yield new discoveries in this field.

中文翻译:

高静水压力下分级沸石中的工程介孔形成

调整多孔材料的质地特性对于优化其在各种应用中的性能至关重要。为此,需要确定和明智地控制影响多孔材料结晶和重组的关键合成参数。尽管压力对化学转化的影响无处不在,但其对制造具有定制物理化学特性的多孔材料的影响仍未得到探索,其潜力尚未开发。在这项工作中,我们通过所谓的表面活性剂模板法,详细研究了高静水压力对超稳定 Y (USY) 沸石中控制良好的晶内介孔形成的影响。随着压力的升高,中孔形成的速度显着增加,而中孔的平均尺寸——由表面活性剂的自组装决定——减小。通过同时调节外部压力和选择不同长度的表面活性剂,我们已经能够精确控制 USY 沸石中的中孔尺寸。我们的研究结果清楚地表明,外部静水压力可用于加速中孔形成并以亚纳米精度设计它们的尺寸。作为第二个例子,我们研究了外部压力对 MCM-41 合成的影响。MCM-41 的结果与我们对 USY 沸石的观察一致,进一步证实了使用高外部压力极大地影响了参与多孔材料合成/改性的两亲分子的自组装行为。
更新日期:2021-11-09
down
wechat
bug