当前位置: X-MOL 学术Aircr. Eng. Aerosp. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CFD analysis of variable geometric angle winglets
Aircraft Engineering and Aerospace Technology ( IF 1.2 ) Pub Date : 2021-10-15 , DOI: 10.1108/aeat-10-2020-0241
Ali Hussain Kazim 1 , Abdullah Hamid Malik 1 , Hammad Ali 1 , Muhammad Usman Raza 1 , Awais Ahmad Khan 1 , Tauseef Aized 1 , Aqsa Shabbir 2
Affiliation  

Purpose

Winglets play a major role in saving fuel costs because they reduce the lift-induced drag formed at the wingtips. The purpose of this paper is to obtain the best orientation of the winglet for the Office National d’Etudes et de Recherches Aérospatiales (ONERA) M6 wing at Mach number 0.84 in terms of lift to drag ratio.

Design/methodology/approach

A computational fluid dynamics analysis of the wing-winglet configuration based on the ONERA M6 airfoil on drag reduction for different attack angles at Mach 0.84 was performed using analysis of systems Fluent. First, the best values of cant and sweep angles in terms of aerodynamic performance were selected by performing simulations. The analysis included cant angle values of 30°, 40°, 45°, 55°, 60°, 70° and 75°, while for the sweep angles 35°, 45°, 55°, 65° and 75° angles were used. The aerodynamic performance was measured in terms of the obtained lift to drag ratios.

Findings

The results showed that slight alternations in the winglet configuration can improve aerodynamic performance for various attack angles. The best lift to drag ratio for the winglet was achieved at a cant angle of 30° and a sweep angle of 65°, which caused a 5.33% increase in the lift to drag ratio. The toe-out angle winglets as compared to the toe-in angles caused the lift to drag ratio to increase because of more attached flow at its surface. The maximum value of the lift to drag ratio was obtained with a toe-out angle (−5°) at an angle of attack 3° which was 2.53% greater than the zero-toed angle winglet.

Originality/value

This work is relatively unique because the cant, sweep and toe angles were analyzed altogether and led to a significant reduction in drag as compared to wing without winglet. The wing model was compared with the results provided by National Aeronautics and Space Administration so this validated the simulation for different wing-winglet configurations.



中文翻译:

变几何角度小翼的 CFD 分析

目的

小翼在节省燃料成本方面发挥着重要作用,因为它们减少了在翼尖形成的升力引起的阻力。本文的目的是在升阻比方面获得马赫数为 0.84 的 Office National d'Etudes et de Recherches Aérospatiales (ONERA) M6 机翼的最佳小翼方向。

设计/方法/方法

使用 Fluent 系统的分析,对基于 ONERA M6 翼型的机翼-小翼配置进行了计算流体动力学分析,以在 0.84 马赫的不同攻角下进行减阻。首先,通过执行模拟选择了在空气动力学性能方面的最佳倾斜角和后掠角值。分析包括 30°、40°、45°、55°、60°、70° 和 75° 的斜角值,而对于后掠角,使用了 35°、45°、55°、65° 和 75° 角. 根据获得的升阻比来测量空气动力学性能。

发现

结果表明,小翼配置的轻微改变可以提高各种攻角的空气动力学性能。小翼的最佳升阻比是在 30° 的斜角和 65° 的后掠角下实现的,这导致升阻比增加了 5.33%。与前束角相比,外束角小翼导致升阻比增加,因为其表面有更多的附着流。升阻比的最大值是在迎角为 3° 的前束角 (-5°) 下获得的,比零束角小翼大 2.53%。

原创性/价值

这项工作相对独特,因为与没有小翼的机翼相比,对倾斜角、后掠角和前束角进行了综合分析,并导致阻力显着降低。机翼模型与美国国家航空航天局提供的结果进行了比较,因此验证了不同机翼小翼配置的模拟。

更新日期:2021-10-15
down
wechat
bug