当前位置: X-MOL 学术Soil Biol. Biochem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Oxygen-depletion by rapid ammonia oxidation regulates kinetics of N2O, NO and N2 production in an ammonium fertilised agricultural soil
Soil Biology and Biochemistry ( IF 9.8 ) Pub Date : 2021-10-15 , DOI: 10.1016/j.soilbio.2021.108460
Liuqing Yang 1 , Xiaojun Zhang 2 , Xiaotang Ju 1, 3 , Di Wu 1
Affiliation  

Oxygen (O2) is a key factor driving the expression of N-cycle-related functional genes and regulating nitrogenous gas production in the soil. However, how and to what extent the associated gene transcription and corresponding gas kinetics interact with the transition of soil O2 status caused by N fertilisation, remains poorly understood. In this context, we conducted a robotized incubation experiment using a He/O2 atmosphere with different amounts of ammonium-based fertiliser (0 (control), 60 (AS60) and 200 mg N kg−1 (NH4)2SO4 (AS200)) applied to an agricultural soil with a strong nitrification potential under three different initial O2 levels (oxic 21%, sub-oxic 3%, and anoxic 0%) over 14 days. Through repeated measurements of N2O, NO, and N2 concentrations and kinetics of mineral N following the decline of O2 concentrations, we found that higher ammonium addition (200 vs. 60 mg N kg−1) caused faster O2 consumption in the headspace and induced up to 238 times higher net accumulation of N2O under initially oxic headspace condition. We speculate that this was due to: 1) the rapid transition of O2 status from oxic to anoxic due to vigorous ammonia oxidation; and 2) the increased N2O/(N2O + NO + N2) ratio of denitrification with higher N addition. The amoA and nosZ gene transcript numbers changed significantly in response to ammonium addition and decreasing O2 concentration, whereas high-throughput sequencing revealed a significant structural alteration of the soil microbiota along with the transition of O2 status. Our results highlight that the vigorousness of oxygen depletion in the soil matrix driven by rapid ammonia oxidation is the proximal factor that regulates gas kinetics in high nitrification-potential soil when O2 diffusion is limited. This implies that practices which reduce hotspots of ammonia oxidation have the potential to mitigate N2O emissions from nitrifier denitrification and denitrification in agricultural soil.



中文翻译:

快速氨氧化耗氧调节氨肥农业土壤中 N2O、NO 和 N2 的产生动力学

氧气(O 2)是驱动氮循环相关功能基因表达和调节土壤中含氮气体产生的关键因素。然而,相关的基因转录和相应的气体动力学如何以及在多大程度上与施氮引起的土壤 O 2状态的转变相互作用,仍然知之甚少。在这种情况下,我们使用 He/O 2气氛和不同量的铵基肥料(0(对照)、60(AS 60)和 200 mg N kg -1 (NH 4 ) 2 SO 4进行了机器人孵化实验(AS 200)) 在三种不同的初始 O 2水平(含氧 21%、亚氧 3% 和缺氧 0%)下,在 14 天内应用于具有强硝化潜力的农业土壤。通过重复测量 N 2 O、NO 和 N 2浓度以及 O 2浓度下降后矿物 N 的动力学,我们发现较高的铵添加量(200 与 60 mg N kg -1)导致更快的 O 2消耗在最初的有氧顶空条件下,N 2 O 的净积累量增加了 238 倍。我们推测这是由于:1) O 2的快速转变由于剧烈的氨氧化,从好氧到缺氧的状态;和 2) N 2 O/(N 2 O + NO + N 2 ) 反硝化的比率随着 N 添加量的增加而增加。的AMOAnosZ基因转录物数目响应于另外铵和减小ö显著改变2浓度,而高通量测序揭示了土壤的微生物群的显著结构改变与的O-过渡沿2状态。我们的结果强调,快速氨氧化驱动的土壤基质中氧耗竭的强度是当 O 2扩散是有限的。这意味着减少氨氧化热点的做法有可能减少农业土壤中硝化菌反硝化和反硝化作用产生的 N 2 O 排放。

更新日期:2021-10-17
down
wechat
bug