当前位置: X-MOL 学术Adv. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Processing Rusty Metals into Versatile Prussian Blue for Sustainable Energy Storage
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2021-10-13 , DOI: 10.1002/aenm.202102356
Jian Peng 1, 2 , Wang Zhang 1 , Jinsong Wang 3 , Lin Li 1 , Weihong Lai 2 , Qiuran Yang 2 , Binwei Zhang 2 , Xiaoning Li 2 , Yumeng Du 2 , Hanwen Liu 2 , Jianli Wang 2 , Zhenxiang Cheng 2 , Lizhen Wang 4 , Shiwen Wang 4 , Jiazhao Wang 2 , Shulei Chou 1 , Huakun Liu 2 , Shixue Dou 2
Affiliation  

To reach a closed-loop material system and meet the urgent requirement of sustainable energy storage technologies, it is essential to incorporate efficient waste management into designing new energy storage materials. Here, a “two birds with one stone” strategy to transform rusty iron products into Prussian blue as high-performance cathode materials, and recover the rusty iron products to their original status, is reported. Owing to the high crystalline and Na+ content, the rusty iron derived Prussian blue shows a high specific capacity of 145 mAh g−1 and excellent cycling stability over 3500 cycles. Through the in situ X-ray diffraction and in situ Raman spectra, it is found that the impressive ion storage capability and stability are strongly related to the suppressed structure distortion during the charge/discharge process. The ion migration mechanism and the possibility to serve as a universal host for other kinds of ions are further illuminated by density functional theory calculations. This work provides a new strategy for recycling wasted materials into high value-added materials for sustainable battery systems, and is adaptable in the nanomedicine, catalysis, sensors, and gas storage applications.

中文翻译:

将生锈金属加工成多功能普鲁士蓝以实现可持续能源储存

为了实现闭环材料系统并满足可持续储能技术的迫切需求,将有效的废物管理纳入新储能材料的设计至关重要。在这里,报道了一种“一石两鸟”的策略,将生锈的铁制品转化为普鲁士蓝作为高性能阴极材料,并使生锈的铁制品恢复到原来的状态。由于高结晶和 Na +含量,锈铁衍生的普鲁士蓝显示出 145 mAh g -1的高比容量以及超过 3500 次循环的优异循环稳定性。通过原位X射线衍射和原位拉曼光谱,发现令人印象深刻的离子存储能力和稳定性与充放电过程中抑制的结构畸变密切相关。密度泛函理论计算进一步阐明了离子迁移机制和作为其他类型离子通用宿主的可能性。这项工作为将废弃材料回收为可持续电池系统的高附加值材料提供了一种新策略,适用于纳米医学、催化、传感器和气体存储应用。
更新日期:2021-11-24
down
wechat
bug