当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Quantum coherent spin–electric control in a molecular nanomagnet at clock transitions
Nature Physics ( IF 17.6 ) Pub Date : 2021-10-14 , DOI: 10.1038/s41567-021-01355-4
Junjie Liu 1 , Jakub Mrozek 1 , Arzhang Ardavan 1 , Aman Ullah 2 , Yan Duan 2 , José J. Baldoví 2 , Eugenio Coronado 2 , Alejandro Gaita-Ariño 2
Affiliation  

Electrical control of spins at the nanoscale offers significant architectural advantages in spintronics, because electric fields can be confined over shorter length scales than magnetic fields1,2,3,4,5. Thus, recent demonstrations of electric-field sensitivities in molecular spin materials6,7,8 are tantalizing, raising the viability of the quantum analogues of macroscopic magneto-electric devices9,10,11,12,13,14,15. However, the electric-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin–electric couplings. Here we show that one path is to identify an energy scale in the spin spectrum that is associated with a structural degree of freedom with a substantial electrical polarizability. We study an example of a molecular nanomagnet in which a small structural distortion establishes clock transitions (that is, transitions whose energy is to first order independent of the magnetic field) in the spin spectrum; the fact that this distortion is associated with an electric dipole allows us to control the clock-transition energy to an unprecedented degree. We demonstrate coherent electrical control of the quantum spin state and exploit it to independently manipulate the two magnetically identical but inversion-related molecules in the unit cell of the crystal. Our findings pave the way for the use of molecular spins in quantum technologies and spintronics.



中文翻译:

时钟跃迁时分子纳米磁体中的量子相干自旋电控制

纳米级自旋的电气控制在自旋电子学中提供了显着的架构优势,因为电场可以被限制在比磁场1,2,3,4,5更短的长度尺度上。因此,最近对分子自旋材料6,7,8中的电场敏感性的证明是诱人的,提高了宏观磁电器件的量子类似物的可行性9,10,11,12,13,14,15. 然而,迄今为止报道的电场敏感性相当弱,这引发了如何设计具有更强自旋电耦合的分子的问题。在这里,我们展示了一种方法是识别自旋光谱中的能量标度,该能量标度与具有显着电极化率的结构自由度相关联。我们研究了一个分子纳米磁体的例子,其中小的结构畸变在自旋光谱中建立了时钟跃迁(即能量为与磁场无关的一阶跃迁);这种失真与电偶极子相关的事实使我们能够将时钟跃迁能量控制到前所未有的程度。我们展示了量子自旋态的相干电控制,并利用它来独立操纵晶体晶胞中两个磁性相同但与反转相关的分子。我们的发现为在量子技术和自旋电子学中使用分子自旋铺平了道路。

更新日期:2021-10-14
down
wechat
bug