当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Self-Recovery, Fatigue-Resistant, and Multifunctional Sensor Assembled by a Nanocellulose/Carbon Nanotube Nanocomplex-Mediated Hydrogel
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-10-12 , DOI: 10.1021/acsami.1c16828
Ya Lu 1 , Yiying Yue 2 , Qinqin Ding 1 , Changtong Mei 1 , Xinwu Xu 1 , Qinglin Wu 3 , Huining Xiao 4 , Jingquan Han 1
Affiliation  

Flexible sensors have attracted great research interest due to their applications in artificial intelligence, wearable electronics, and personal health management. However, due to the inherent brittleness of common hydrogels, preparing a hydrogel-based sensor integrated with excellent flexibility, self-recovery, and antifatigue properties still remains a challenge to date. In this study, a type of physically and chemically dual-cross-linked conductive hydrogels based on 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber (TOCN)-carrying carbon nanotubes (CNTs) and polyacrylamide (PAAM) matrix via a facial one-pot free-radical polymerization is developed for multifunctional wearable sensing application. Inside the hierarchical gel network, TOCNs not only serve as the nanoreinforcement with a toughening effect but also efficiently assist the homogeneous distribution of CNTs in the hydrogel matrix. The optimized TOCN-CNT/PAAM hydrogel integrates high compressive (∼2.55 MPa at 60% strain) and tensile (∼0.15 MPa) strength, excellent intrinsic self-recovery property (recovery efficiency >92%), and antifatigue capacity under both cyclic stretching and pressing. The multifunctional sensors assembled by the hydrogel exhibit both high strain sensitivity (gauge factor ≈11.8 at 100–200% strain) and good pressure sensing ability over a large pressure range (0–140 kPa), which can effectively detect the subtle and large-scale human motions through repeatable and stable electrical signals even after 100 loading–unloading cycles. The comprehensive performance of the TOCN-CNT/PAAM hydrogel-based sensor is superior to those of most gel-based sensors previously reported, indicating its potential applications in multifunctional sensing devices for healthcare systems and human motion monitoring.

中文翻译:

由纳米纤维素/碳纳米管纳米复合物介导的水凝胶组装的自恢复、抗疲劳和多功能传感器

柔性传感器因其在人工智能、可穿戴电子产品和个人健康管理等方面的应用而引起了极大的研究兴趣。然而,由于普通水凝胶固有的脆性,制备具有优异柔韧性、自恢复和抗疲劳性能的水凝胶传感器至今仍是一个挑战。在本研究中,一种基于 2,2,6,6-四甲基哌啶-1-氧基 (TEMPO)-氧化纤维素纳米纤维 (TOCN) 的碳纳米管 (CNT) 和通过面部一锅自由基聚合的聚丙烯酰胺(PAAM)基质被开发用于多功能可穿戴传感应用。在分层凝胶网络内部,TOCNs不仅作为具有增韧作用的纳米增强材料,而且还有效地帮助CNTs在水凝胶基质中的均匀分布。优化后的 TOCN-CNT/PAAM 水凝胶集高抗压(~2.55 MPa,60% 应变)和抗拉(~0.15 MPa)强度、优异的内在自恢复性能(恢复效率 > 92%)和循环拉伸下的抗疲劳能力为一体和紧迫。由水凝胶组装的多功能传感器既表现出高应变灵敏度(100-200%应变时的应变系数≈11.8),又在大压力范围(0-140 kPa)内具有良好的压力传感能力,可以有效地检测细微和大的压力。即使在 100 次加载-卸载循环之后,也可以通过可重复且稳定的电信号来衡量人体运动。
更新日期:2021-10-27
down
wechat
bug