当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Introduction: Frontiers of Analytical Science
Chemical Reviews ( IF 62.1 ) Pub Date : 2021-10-13 , DOI: 10.1021/acs.chemrev.1c00652
Renato Zenobi 1
Affiliation  

This article is part of the Frontiers of Analytical Science special issue. Chemical analysis is key to many different areas of everyday life and at the basis of many branches of modern science. In areas such as food safety, product safety, medical diagnosis, environmental monitoring, and industrial production, having access to analytical data in a sufficiently accurate and timely manner is usually taken for granted. However, the developments of methodologies for online sensing, multiparameter data acquisition, or trace determinations are often much less visible or not visible at all to the end user. In modern science, it goes without saying that global atmospheric monitoring, the human genome project, characterization of nanoscale materials, or proteomics would not have taken off at all without the development of suitable analytical methods. The articles in this Thematic Issue are designed to bring these developments into the focus of the reader and highlight modern trends. They are summarized here in very compact form, ordered—arbitrarily—according to the last name of the senior authors of each review article: Alsteens and coauthors write about atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Viewing cellular surfaces with nanoscale resolution and from the perspective of their mechanical properties is a fascinating area of modern science and impressively illustrates the power of modern analytical tools. Baker and coauthors review scanning ion conductance microscopy, an electrochemical variant of scanning probe microscopy with great promise in imaging redox processes at interfaces in biological systems and in complex materials. The article also discusses hybrid instrumentation that relies not only on SICM but also on other, orthogonal methods such as optical or fluorescence microscopy. The review by Doble and coauthors covers the use of laser ablation inductively coupled mass spectrometry for imaging in biology. ICP-MS being an elemental analysis method, this seems counterintuitive at first sight, but its very high sensitivity and the introduction of specific probes labeled with rare isotopes are increasingly attractive for the biological sciences. Gruene and Mugnaioli review the developments and practical aspects in 3D electron diffraction for chemical structure determination and discuss the differences between this emerging method and the much more established X-ray crystallography. Henry and coauthors write about paper-based microfluidic devices, which have attracted increasing attention because they promise low-cost alternatives to much more expensive laboratory-based analyses. Ivleva’s article does not focus on a particular analytical technology but on an increasingly important analytical challenge, namely microplastics and nanoplastics, an emerging class of particulate anthropogenic pollutants. Her article details the needs and analytical possibilities for identification and quantitation of these extremely complex analytes, including their characterization in complex matrices, which is typical for their occurrence in the environment. Kukura and coauthors present an introduction to light-scattering microscopy, which has become a viable alternative to fluorescence microscopy in terms of sensitivity and spatial resolution but does not require labeling. Sauer’s review covers super-resolving fluorescence microscopy, a method that has of course attracted public attention due to the 2014 chemistry Nobel prize that recognized this field. The review centers around one of the most promising applications, neuroscience. Schoenmakers and coauthors review the exciting emerging area of 3D chromatographic separations. Adding a third dimension to separation methods, a cornerstone of analytical technology for decades, holds promise for dealing with ever more complex mixtures. Tan and coauthors write about the use of aptamers, DNA or RNA sequences designed for specific recognition of chemical or biological targets, and their promise in liquid biopsy techniques for precision medicine. Besides the topics covered by these 10 reviews, there are a number of “hot” areas in analytical science, for example single cell metabolomics, nanoelectrochemistry, nanopore DNA sequencing, archeological proteomics, multimodal imaging, in-cell NMR spectroscopy, quantum cascade lasers, and several others. In fact, some of these were originally planned to be included in this Thematic Issue. I would like to cordially thank all the authors that did submit their reviews as promised and in time to be included in the printed version of the Thematic Issue, and I wish the reader pleasure, enjoyment, and many new insights while immersing in this nice collection of reviews on the frontiers of chemical analysis! Renato Zenobi is Professor of Analytical Chemistry at the Organic Chemistry Laboratory of the Swiss Federal Institute of Technology (ETH) Zurich. A native of Zurich, Switzerland, he received a M.Sc. degree from the ETH Zurich in 1986 and a Ph.D. at Stanford University in 1990. After two postdoctoral appointments at the University of Pittsburgh and at the University of Michigan, Zenobi returned to Switzerland in 1992 to EPFL, Lausanne, joined ETH Zurich in 1995 as an assistant professor, and was promoted to full professor in 2000. From 2010–2020 he served as Associate Editor for the ACS journal Analytical Chemistry. Zenobi has published well over 500 peer-reviewed scientific papers. Best known for the invention and development of tip-enhanced Raman spectroscopy (TERS), a spectroscopic methodology with ≈10 nm spatial resolution, he is active in several areas of analytical science including laser-based analytical chemistry, fundamentals of electrospray and laser-assisted mass spectrometry, ambient mass spectrometry, and on-line breath-based metabolomics for medical diagnosis. This article has not yet been cited by other publications. Renato Zenobi is Professor of Analytical Chemistry at the Organic Chemistry Laboratory of the Swiss Federal Institute of Technology (ETH) Zurich. A native of Zurich, Switzerland, he received a M.Sc. degree from the ETH Zurich in 1986 and a Ph.D. at Stanford University in 1990. After two postdoctoral appointments at the University of Pittsburgh and at the University of Michigan, Zenobi returned to Switzerland in 1992 to EPFL, Lausanne, joined ETH Zurich in 1995 as an assistant professor, and was promoted to full professor in 2000. From 2010–2020 he served as Associate Editor for the ACS journal Analytical Chemistry. Zenobi has published well over 500 peer-reviewed scientific papers. Best known for the invention and development of tip-enhanced Raman spectroscopy (TERS), a spectroscopic methodology with ≈10 nm spatial resolution, he is active in several areas of analytical science including laser-based analytical chemistry, fundamentals of electrospray and laser-assisted mass spectrometry, ambient mass spectrometry, and on-line breath-based metabolomics for medical diagnosis.

中文翻译:

简介:分析科学的前沿

本文是部分分析科学前沿特刊。化学分析是日常生活许多不同领域的关键,也是现代科学许多分支的基础。在食品安全、产品安全、医疗诊断、环境监测和工业生产等领域,以足够准确和及时的方式获取分析数据通常是理所当然的。然而,在线传感、多参数数据采集或轨迹测定的方法的发展往往对最终用户来说不太可见或根本不可见。在现代科学中,毫无疑问,如果没有合适的分析方法的发展,全球大气监测、人类基因组计划、纳米材料的表征或蛋白质组学根本不会起飞。本专题中的文章旨在将这些发展带入读者的焦点并突出现代趋势。它们在此处以非常紧凑的形式进行了总结,根据每篇评论文章的资深作者的姓氏任意排序:Alsteens 和合著者撰写了有关基于原子力显微镜的力谱和生物分子和细胞系统的多参数成像的文章。以纳米级分辨率并从其机械特性的角度观察细胞表面是现代科学的一个迷人领域,并令人印象深刻地说明了现代分析工具的力量。Baker 和合著者回顾了扫描离子电导显微镜,扫描探针显微镜的一种电化学变体,在生物系统和复杂材料的界面处成像氧化还原过程方面具有很大的前景。本文还讨论了不仅依赖于 SICM 还依赖于其他正交方法(如光学或荧光显微镜)的混合仪器。Doble 和合著者的评论涵盖了激光烧蚀电感耦合质谱在生物学成像中的应用。ICP-MS 作为一种元素分析方法,乍一看似乎违反直觉,但其非常高的灵敏度和引入用稀有同位素标记的特定探针对生物科学越来越有吸引力。Gruene 和 Mugnaioli 回顾了用于化学结构测定的 3D 电子衍射的发展和实践方面,并讨论了这种新兴方法与更成熟的 X 射线晶体学之间的差异。亨利和合著者撰写了有关纸质微流体装置的文章,这些装置引起了越来越多的关注,因为它们承诺以低成本替代更昂贵的基于实验室的分析。Ivleva 的文章不关注特定的分析技术,而是关注日益重要的分析挑战,即微塑料和纳米塑料,这是一类新兴的人为颗粒污染物。她的文章详细介绍了对这些极其复杂的分析物进行鉴定和定量的需求和分析可能性,包括它们在复杂基质中的表征,这是它们在环境中发生的典型特征。Kukura 和合著者介绍了光散射显微镜,它在灵敏度和空间分辨率方面已成为荧光显微镜的可行替代方案,但不需要标记。Sauer 的评论涵盖了超分辨荧光显微镜,由于 2014 年诺贝尔化学奖对该领域的认可,这种方法当然引起了公众的关注。审查围绕最有前途的应用之一,神经科学。Schoenmakers 和合著者回顾了令人兴奋的 3D 色谱分离新兴领域。为分离方法添加第三个维度是几十年来分析技术的基石,有望处理越来越复杂的混合物。Tan 和合著者写了关于适体的使用,专为特异性识别化学或生物靶标而设计的 DNA 或 RNA 序列,以及它们在精准医学液体活检技术中的应用前景。除了这 10 篇综述涵盖的主题外,分析科学中还有许多“热门”领域,例如单细胞代谢组学、纳米电化学、纳米孔 DNA 测序、考古蛋白质组学、多模态成像、细胞内核磁共振光谱、量子级联激光器、和其他几个。事实上,其中一些原计划包括在本专题中。我要衷心感谢所有按承诺及时提交评论的作者,并及时将其纳入主题问题的印刷版,并祝读者愉快,享受,以及许多新的见解,同时沉浸在这本关于化学分析前沿的精彩评论中!Renato Zenobi 是苏黎世瑞士联邦理工学院 (ETH) 有机化学实验室的分析化学教授。他是瑞士苏黎世人,获得了理学硕士学位。1986 年获得苏黎世联邦理工学院博士学位,并获得博士学位。1990 年在斯坦福大学。在匹兹堡大学和密歇根大学两次博士后任命后,Zenobi 于 1992 年回到瑞士洛桑 EPFL,1995 年加入苏黎世联邦理工学院担任助理教授,并晋升为正教授2000 年。从 2010 年到 2020 年,他担任 ACS 期刊的副主编 Renato Zenobi 是苏黎世瑞士联邦理工学院 (ETH) 有机化学实验室的分析化学教授。他是瑞士苏黎世人,获得了理学硕士学位。1986 年获得苏黎世联邦理工学院博士学位,并获得博士学位。1990 年在斯坦福大学。在匹兹堡大学和密歇根大学两次博士后任命后,Zenobi 于 1992 年回到瑞士洛桑 EPFL,1995 年加入苏黎世联邦理工学院担任助理教授,并晋升为正教授2000 年。从 2010 年到 2020 年,他担任 ACS 期刊的副主编 Renato Zenobi 是苏黎世瑞士联邦理工学院 (ETH) 有机化学实验室的分析化学教授。他是瑞士苏黎世人,获得了理学硕士学位。1986 年获得苏黎世联邦理工学院博士学位,并获得博士学位。1990 年在斯坦福大学。在匹兹堡大学和密歇根大学两次博士后任命后,Zenobi 于 1992 年回到瑞士洛桑 EPFL,1995 年加入苏黎世联邦理工学院担任助理教授,并晋升为正教授2000 年。从 2010 年到 2020 年,他担任 ACS 期刊的副主编分析化学. Zenobi 发表了超过 500 篇经过同行评审的科学论文。他最著名的是尖端增强拉曼光谱 (TERS) 的发明和开发,这是一种空间分辨率约为 10 nm 的光谱方法,他活跃于分析科学的多个领域,包括基于激光的分析化学、电喷雾基础和激光辅助质谱、环境质谱和用于医学诊断的在线基于呼吸的代谢组学。这篇文章尚未被其他出版物引用。Renato Zenobi 是苏黎世瑞士联邦理工学院 (ETH) 有机化学实验室的分析化学教授。他是瑞士苏黎世人,获得了理学硕士学位。1986 年获得苏黎世联邦理工学院博士学位,并获得博士学位。1990年在斯坦福大学。分析化学。Zenobi 发表了超过 500 篇经过同行评审的科学论文。他最著名的是尖端增强拉曼光谱 (TERS) 的发明和开发,这是一种空间分辨率约为 10 nm 的光谱方法,他活跃于分析科学的多个领域,包括基于激光的分析化学、电喷雾基础和激光辅助质谱、环境质谱和用于医学诊断的在线基于呼吸的代谢组学。
更新日期:2021-10-13
down
wechat
bug