当前位置: X-MOL 学术Front. Chem. Sci. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS
Frontiers of Chemical Science and Engineering ( IF 4.3 ) Pub Date : 2021-10-11 , DOI: 10.1007/s11705-021-2089-z
Huiying Quan 1 , Ying Xuan 1 , Kai Yu 1 , Kejiang Qian 2 , Lan-Lan Lou 2 , Shuangxi Liu 2
Affiliation  

It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction. However, achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging. In this study, we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1xS nanoparticles for hydrogen production under visible light irradiation (λ > 420 nm). Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers. The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g−1·h−1, with an apparent quantum efficiency of 35.9% at 420 nm, which is 4.2 and 23.9 times higher than those of pure Zn0.5Cd0.5S (4.67 mmol·g−1·h−1) and CdS (0.82 mmol·g−1·h−1), respectively. In particular, under Pt-free conditions, an attractive hydrogen production rate (3.23 mmol·g−1·h−1) was achieved, providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting. Moreover, the composites showed excellent stability, and no obvious loss in activity was observed after five cycling tests.



中文翻译:

ZnxCd1−xS装饰的三维有序大孔SrTiO3在可见光驱动析氢反应中的优异性能

开发具有优异光捕获能力和高载流子分离效率的新兴光催化剂用于可见光光催化析氢反应具有广泛的兴趣。然而,在无贵金属条件下实现令人满意的析氢效率仍然具有挑战性。在这项研究中,我们展示了用 Zn x Cd 1 - x S装饰的三维有序大孔 SrTiO3 的制备用于在可见光照射下(λ > 420 nm)制氢的纳米粒子。光催化活性的协同增强是通过慢光子效应和光生载流子分离效率的提高来实现的。所获得的复合材料可提供高达 19.67 mmol·g -1 ·h -1 的非常高的制氢效率,在 420 nm 处的表观量子效率为 35.9%,是纯 Zn0.5Cd0 的 4.2 和 23.9 倍。分别为5S(4.67 mmol·g -1 ·h -1)和CdS(0.82 mmol·g -1 ·h -1)。特别是,在无 Pt 条件下,具有吸引力的制氢速率 (3.23 mmol·g -1 ·h -1) 的实现,提供了一种低成本、高效率的水分解制氢策略。此外,复合材料表现出优异的稳定性,经过五次循环测试后未观察到活性明显下降。

更新日期:2021-10-12
down
wechat
bug