当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Micromirror Total Internal Reflection Microscopy for High-Performance Single Particle Tracking at Interfaces
ACS Photonics ( IF 6.5 ) Pub Date : 2021-10-08 , DOI: 10.1021/acsphotonics.1c01268
Xuanhui Meng 1 , Adar Sonn-Segev 1 , Anne Schumacher 1 , Daniel Cole 1 , Gavin Young 1 , Stephen Thorpe 1 , Robert W Style 2 , Eric R Dufresne 2 , Philipp Kukura 1
Affiliation  

Single particle tracking has found broad applications in the life and physical sciences, enabling the observation and characterization of nano- and microscopic motion. Fluorescence-based approaches are ideally suited for high-background environments, such as tracking lipids or proteins in or on cells, due to superior background rejection. Scattering-based detection is preferable when localization precision and imaging speed are paramount due to the in principle infinite photon budget. Here, we show that micromirror-based total internal reflection dark field microscopy enables background suppression previously only reported for interferometric scattering microscopy, resulting in nanometer localization precision at 6 μs exposure time for 20 nm gold nanoparticles with a 25 × 25 μm2 field of view. We demonstrate the capabilities of our implementation by characterizing sub-nanometer deterministic flows of 20 nm gold nanoparticles at liquid–liquid interfaces. Our results approach the optimal combination of background suppression, localization precision, and temporal resolution achievable with pure scattering-based imaging and tracking of nanoparticles at interfaces.

中文翻译:

用于界面处高性能单粒子跟踪的微镜全内反射显微镜

单粒子跟踪在生命科学和物理科学中得到了广泛的应用,能够观察和表征纳米和微观运动。由于出色的背景抑制,基于荧光的方法非常适合高背景环境,例如跟踪细胞内或细胞上的脂质或蛋白质。由于原则上无限光子预算,当定位精度和成像速度至关重要时,基于散射的检测是更可取的。在这里,我们展示了基于微镜的全内反射暗场显微镜能够实现先前仅针对干涉散射显微镜报道的背景抑制,从而在 6 μs 曝光时间下实现了具有 25 × 25 μm 2 的20 nm 金纳米粒子的纳米定位精度视野。我们通过表征 20 nm 金纳米粒子在液-液界面的亚纳米确定性流动来证明我们的实施能力。我们的结果接近了背景抑制、定位精度和时间分辨率的最佳组合,可通过纯基于散射的成像和界面处的纳米粒子跟踪实现。
更新日期:2021-10-20
down
wechat
bug