当前位置: X-MOL 学术J. Mech. Phys. Solids › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A universal mechanical framework for noncovalent interface in laminated nanocomposites
Journal of the Mechanics and Physics of Solids ( IF 5.0 ) Pub Date : 2021-10-09 , DOI: 10.1016/j.jmps.2021.104560
ZeZhou He 1 , YinBo Zhu 1 , HengAn Wu 1
Affiliation  

Owing to the recoverable nature of noncovalent interactions, laminated nanocomposites dominated by noncovalent interfaces can deform inelastically and generate large relative sliding between building bricks under external loading, which not only contributes to outstanding mechanical properties at the macroscale but also induces coordinated deformation behavior over several hierarchical length scales. Nevertheless, it is challenging to develop a universal mechanical approach quantifying such general features given the architecture and noncovalent interface of nonlinear deformation and size effect. Here, we demonstrate that by extending interfacial constitutive relation condensed from various atomic interactions and interlayer configurations, a multiscale analysis framework from bottom-up for brick-interface systems is proposed to decode the interplay between brick deformation and interfacial intrinsic features. Due to the periodicity of interfacial configurations, there are three deformation modes for regular interface under different overlapping lengths, i.e., uniform, localization, and kink, where two critical lengths are defined to generally describe the transformation of deformation modes. The pronounced interfacial kink exhibits multiple topological defects nucleating and propagating across the interface, thereby strengthening and toughening laminated nanocomposites simultaneously. The discrete shear-lag analysis is then performed to evaluate the commensurate versus incommensurate interfacial stacking configurations. We identify that the deformation of commensurate interface behaves similarly to the regular one, while the linear-sliding model can well describe that of incommensurate and random interfaces. Interestingly, we find that counterintuitively, the load transfer capability of an incommensurate interface exceeds that of a commensurate one as the overlapping length is sufficiently long because of resistance to sliding. Our theoretical predictions and the proposed mechanical framework are validated through large-scale molecular dynamics simulations. More importantly, using a few universal characteristic parameters, a deformation-mode phase diagram is proposed to give the landscape for different hierarchical materials with various noncovalent interfaces, providing guidelines for the mechanical design and optimization of brick-interface nanocomposites.



中文翻译:

层压纳米复合材料中非共价界面的通用机械框架

由于非共价相互作用的可恢复性,以非共价界面为主的层状纳米复合材料在外部载荷作用下会发生非弹性变形并在建筑砖之间产生较大的相对滑动,这不仅有助于在宏观尺度上获得出色的机械性能,而且在几个层次上引起协调变形行为。长度刻度。然而,鉴于非线性变形和尺寸效应的结构和非共价界面,开发一种通用的机械方法来量化这些一般特征是具有挑战性的。在这里,我们证明了通过扩展从各种原子相互作用和层间配置浓缩的界面本构关系,提出了一种自下而上的砖界面系统多尺度分析框架,以解码砖变形与界面固有特征之间的相互作用。由于界面构型的周期性,规则界面在不同重叠长度下存在三种变形模式,即均匀、局部和扭结,其中定义了两个临界长度来概括描述变形模式的转变。明显的界面扭结表现出多个拓扑缺陷,在界面上成核和传播,从而同时增强和增韧层压纳米复合材料。然后进行离散剪切滞后分析以评估相称与不相称的界面堆叠配置。我们发现,相称界面的变形与常规界面的变形行为相似,而线性滑动模型可以很好地描述不相称和随机界面的变形。有趣的是,我们发现与直觉相反,由于滑动阻力,重叠长度足够长,因此非公称界面的载荷传递能力超过了相称界面的载荷传递能力。我们的理论预测和提出的机械框架通过大规模分子动力学模拟得到验证。更重要的是,使用一些通用特征参数,提出了变形模式相图,以给出具有各种非共价界面的不同层次材料的景观,为砖界面纳米复合材料的机械设计和优化提供指导。

更新日期:2021-10-09
down
wechat
bug