当前位置: X-MOL 学术Exp. Heat Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal performance evaluation of a latent heat thermal energy storage unit with an embedded multi-tube finned copper heat exchanger
Experimental Heat Transfer ( IF 3.5 ) Pub Date : 2021-10-07 , DOI: 10.1080/08916152.2021.1984342
Mohamed Fadl 1 , Philip C. Eames 1
Affiliation  

ABSTRACT

The experimental thermal characterization during charging and discharging of a prototype compact latent heat thermal energy storage system (LHTESS) with an embedded horizontally oriented finned multi-tube copper heat exchanger is presented. The thermal store was filled with a commercial-grade, CrodaTherm™ 60, phase change material (PCM) with a nominal melting temperature of 60°C. The proposed heat exchanger (HX) configuration mitigates the effect of low PCM thermal conductivity and increases the rates of heat transfer to and from the store during the charging and discharging processes compared to multi-tube copper HX without fins. The experimental testing regime assessed the impact of heat transfer fluid (HTF) volume flow rate and inlet temperature on I) transient PCM temperature distribution, II) the total charging/discharging time and III) instantaneous/average power during the charging and discharging processes. The experimental results showed that the HTF volume flow rate and inlet temperature play a significant role in the thermal performance of the LHTESS during the charging/discharging process. During the charging process, the influence of increasing HTF inlet temperature is greater than that due to increasing HTF volume flow rate. Moreover, it is shown that during the first 30 minutes of the discharging process, the average power output was 4.3, 5.1 and 5.3 kW for HTF volume flow rate of 2.5 and 7.2 and 10.5 l/min, respectively.



中文翻译:

嵌入式多管翅片铜换热器潜热储热装置热性能评价

摘要

介绍了带有嵌入式水平定向翅片多管铜热交换器的原型紧凑型潜热热能存储系统 (LHTESS) 在充电和放电过程中的实验热特性。热库中装有商业级 CrodaTherm™ 60 相变材料 (PCM),标称熔化温度为 60°C。与没有翅片的多管铜 HX 相比,所提出的热交换器 (HX) 配置减轻了低 PCM 热导率的影响,并提高了在充电和放电过程中进出存储器的热传递速率。实验测试制度评估了传热流体 (HTF) 体积流量和入口温度对 I) 瞬态 PCM 温度分布的影响,II) 总充电/放电时间和 III) 充电和放电过程中的瞬时/平均功率。实验结果表明,HTF体积流量和入口温度对LHTESS在充放电过程中的热性能起着重要作用。在充注过程中,提高导热油进口温度的影响大于提高导热油体积流量的影响。此外,显示在放电过程的前 30 分钟内,对于 2.5、7.2 和 10.5 l/min 的 HTF 体积流量,平均功率输出分别为 4.3、5.1 和 5.3 kW。实验结果表明,HTF体积流量和入口温度对LHTESS在充放电过程中的热性能起着重要作用。在充注过程中,提高导热油进口温度的影响大于提高导热油体积流量的影响。此外,显示在放电过程的前 30 分钟内,对于 2.5、7.2 和 10.5 l/min 的 HTF 体积流量,平均功率输出分别为 4.3、5.1 和 5.3 kW。实验结果表明,HTF体积流量和入口温度对LHTESS在充放电过程中的热性能起着重要作用。在充注过程中,提高导热油进口温度的影响大于提高导热油体积流量的影响。此外,显示在放电过程的前 30 分钟内,对于 2.5 和 7.2 以及 10.5 l/min 的 HTF 体积流量,平均功率输出分别为 4.3、5.1 和 5.3 kW。

更新日期:2021-10-07
down
wechat
bug