当前位置: X-MOL 学术Acc. Chem. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Noncovalent Interactions in Organometallic Chemistry: From Cohesion to Reactivity, a New Chapter
Accounts of Chemical Research ( IF 16.4 ) Pub Date : 2021-10-07 , DOI: 10.1021/acs.accounts.1c00393
Yann Cornaton 1 , Jean-Pierre Djukic 1
Affiliation  

Noncovalent interactions (NCIs) have long interested a vast community of chemists who investigated their “canonical categories” derived from descriptive crystallography, e.g., H-bonds, π–π interactions, halogen/chalcogen/tetrel bonds, cation−π and C–H−π interactions, metallophilic interactions in the broad sense, etc. Recent developments in theoretical chemistry have enabled the treatment of noncovalent interactions under new auspices: dispersion-force-inclusive density functionals have emerged, which are reliable for modeling small to large molecular systems. It is possible to perform the full analysis of the contributions of London, Debye, and Keesom forces, i.e., the main components of van der Waals forces, by the DFT-D and ab initio methods at a reasonable computational cost. Our research has been focusing for now 15 years on the role of NCIs in the cohesion of organometallic complexes. NCIs are not only effective in Werner’s secondary coordination sphere but also in the metal’s primary one. The stabilization of electron-unsaturated transition metal complexes by hemichelation, metal–metal donor–acceptor complexes, and self-aggregation of cationic Rh(I) chromophores have indeed outlined the significance of the London dispersion force as an attractive force operating throughout the whole molecule or molecular assembly. The recent outburst of interest in C–H bond functionalization led us to address the broader question of reaction and catalyst engineering: although one can now satisfactorily analyze bonding and molecular cohesion in transition-metal-based organometallic systems, can modern theoretical methods guide reactivity exploration and the engineering of novel catalytic systems? We addressed this question by investigating the ambiphilic metal–ligand activation/concerted metalation–deprotonation mechanism involved in transition-metal-catalyzed directed C–H bond functionalization. This endeavor was initiated having in scope the construction of a rationale for the transposition of 4–5d metal chemistry to earth-abundant 3d metals. In this base-assisted mechanism of C–H bond metalation, agostic interactions are necessary but not sufficient because C–H bond breaking actually relies on the attractive NCI coding of a proton-transfer step and the minimization of metal–H repulsion. This Account introduces the recent shift of our research toward the construction of an NCI-inclusive paradigm of chemical reactivity engineering based on experimental efforts propped up by state-of-the-art theoretical tools.

中文翻译:

有机金属化学中的非共价相互作用:从内聚力到反应性,新篇章

长期以来,非共价相互作用 (NCI) 一直引起广大化学家社区的兴趣,他们研究了从描述性晶体学中得出的“规范类别”,例如 H 键、π-π 相互作用、卤素/硫属元素/四氢键、阳离子-π 和 C-H -π 相互作用、广义上的亲金属相互作用等。 理论化学的最新发展使得在新的支持下处理非共价相互作用成为可能:出现了包含色散力的密度泛函,这对于模拟从小到大的分子系统是可靠的。可以通过 DFT-D 和 ab initio 方法以合理的计算成本对 London、Debye 和 Keesom 力(即范德瓦尔斯力的主要组成部分)的贡献进行全面分析。15 年来,我们的研究一直专注于 NCI 在有机金属配合物内聚力中的作用。NCI 不仅在 Werner 的二级配位领域有效,而且在金属的主要配位领域也有效。通过半螯合、金属-金属供体-受体配合物和阳离子 Rh(I) 发色团的自聚集稳定电子-不饱和过渡金属配合物确实概述了伦敦色散力作为贯穿整个分子的吸引力的重要性或分子组装。最近对 C-H 键官能化的兴趣爆发使我们解决了更广泛的反应和催化剂工程问题:尽管现在人们可以令人满意地分析基于过渡金属的有机金属系统中的键合和分子内聚力,现代理论方法能否指导反应性探索和新型催化系统的工程设计?我们通过研究过渡金属催化的定向 C-H 键官能化中涉及的双亲金属-配体活化/协同金属化-去质子化机制来解决这个问题。这项努力的开始是为了构建将 4-5d 金属化学转换为地球上丰富的 3d 金属的基本原理。在这种碱辅助的 C-H 键金属化机制中,积极的相互作用是必要的,但还不够,因为 C-H 键的断裂实际上依赖于质子转移步骤的有吸引力的 NCI 编码和金属-H 排斥的最小化。
更新日期:2021-10-19
down
wechat
bug