当前位置: X-MOL 学术Nat. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Engineering crystal structures with light
Nature Physics ( IF 17.6 ) Pub Date : 2021-10-04 , DOI: 10.1038/s41567-021-01366-1
Ankit S. Disa 1, 2 , Andrea Cavalleri 1, 2, 3 , Tobia F. Nova 4
Affiliation  

The crystal structure of a solid largely dictates its electronic, optical and mechanical properties. Indeed, much of the exploration of quantum materials in recent years including the discovery of new phases and phenomena in correlated, topological and two-dimensional materials—has been based on the ability to rationally control crystal structures through materials synthesis, strain engineering or heterostructuring of van der Waals bonded materials. These static approaches, while enormously powerful, are limited by thermodynamic and elastic constraints. An emerging avenue of study has focused on extending such structural control to the dynamical regime by using resonant laser pulses to drive vibrational modes in a crystal. This paradigm of ‘nonlinear phononics’ provides a basis for rationally designing the structure and symmetry of crystals with light, allowing for the manipulation of functional properties at high speed and, in many instances, beyond what may be possible in equilibrium. Here we provide an overview of the developments in this field, discussing the theory, applications and future prospects of optical crystal structure engineering.



中文翻译:

用光设计晶体结构

固体的晶体结构在很大程度上决定了它的电子、光学和机械性能。事实上,近年来对量子材料的许多探索,包括在相关、拓扑和二维材料中发现新相和现象,都是基于通过材料合成、应变工程或异质结构合理控制晶体结构的能力。范德华粘结材料。这些静态方法虽然非常强大,但受到热力学和弹性约束的限制。一种新兴的研究途径专注于通过使用谐振激光脉冲驱动晶体中的振动模式,将这种结构控制扩展到动力学状态。这种“非线性声子学”范式为用光合理设计晶体的结构和对称性提供了基础,允许高速操纵功能特性,并且在许多情况下,超出了平衡可能的范围。在这里,我们概述了该领域的发展,讨论了光学晶体结构工程的理论、应用和未来前景。

更新日期:2021-10-06
down
wechat
bug