当前位置: X-MOL 学术Geology › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A new kind of invisible gold in pyrite hosted in deformation-related dislocations
Geology ( IF 4.8 ) Pub Date : 2021-10-01 , DOI: 10.1130/g49028.1
Denis Fougerouse 1, 2 , Steven M. Reddy 1, 2 , Mark Aylmore 2 , Lin Yang 3 , Paul Guagliardo 4 , David W. Saxey 2 , William D.A. Rickard 2 , Nicholas Timms 1
Affiliation  

Mining of “invisible gold” associated with sulfides in gold ores represents a significant proportion of gold production worldwide. Gold hosted in sulfide minerals has been proposed to be structurally bound in the crystal lattice as a sulfide-gold alloy and/or to occur as discrete metallic nanoparticles. Using a combination of microstructural quantification and nanoscale geochemical analyses on a pyrite crystal from an orogenic gold deposit, we show that dislocations hosted in a deformation low-angle boundary can be enriched in Ni, Cu, As, Pb, Sb, Bi, and Au. The cumulative trace-element enrichment in the dislocations is 3.2 at% higher compared to the bulk crystal. We propose that trace elements were segregated during the migration of the dislocation following the dislocation-impurity pair model. The gold hosted in nanoscale dislocations represents a new style of invisible gold.The discovery rate of new gold deposits is in decline worldwide, with the ore quality degrading in parallel to the precious metal value increasing. Ores with invisible gold are characterized by trace amounts of gold hosted in sulfide minerals (from a few parts per million to several thousand parts per million), predominantly pyrite and arsenopyrite (Cook and Chryssoulis, 1990), and this is now a common resource for the gold mining industry. In these ores, gold is either structurally bound in the crystal lattice as an alloy (Cabri et al., 1989), or it occurs as discrete metallic nanoparticles and microparticles (Palenik et al., 2004).Recently, it has been postulated that gold can be hosted in low-angle boundaries (Dubosq et al., 2018; Wu et al., 2021). However, along deformation microstructures, the nature of the gold (native gold or alloyed), its mineralogical location (solid solution, crystal defects, or open fractures), its source (intragrain/intergrain diffusion or secondary fluid-related), and the mechanisms for gold segregation are unresolved. Determining the form and distribution of gold in refractory ores has been technically challenging because the analytical volume of many quantitative approaches is far greater than the size of the gold particles in sulfides (Fougerouse et al., 2020). Therefore, relationships between gold and deformation microstructures have remained speculative.Characterization of the processes responsible for its chemical modification underpins the widespread use of pyrite to both constrain the formation of ore deposits and to optimize extraction of the gold it contains (Cook et al., 2013). The bulk chemical compositions of sulfide mineral assemblages have therefore been well documented, but the processes by which the chemistry of pyrite may have been modified are still debated.In order to better understand the crystallographic location of gold in deformation microstructures, we used nanoscale characterization techniques on gold-bearing arsenian pyrite that underwent a low amount of crystal plasticity. The results advance our understanding of the process by which pyrite chemistry can be modified and also suggest an alternative interpretation to anomalous geochemical spot analyses, commonly attributed to nanoparticles. The implications of the results for the selective extraction of gold are also conceptualized.The studied sample was collected in the Huangjindong orogenic-type gold deposit, hosted in the central part of the Jiangnan orogen (Fig. 1; Zhang et al., 2020). The Jiangnan orogen was formed during the collision between the Yangtze and Cathaysia blocks during the assembly of the Rodinia supercontinent (Li et al., 2008). The sample (D02B3; 114.049°N, 28.675°E; Fig. 1) is a representative gold ore from east-west–trending orebodies (dipping 45–70°S; Zhang et al., 2020). The sample is a mineralized slate with a stock work of small (a few centimeters) quartz veins (Fig. 1). The main ore minerals include pyrite and arsenopyrite with minor chalcopyrite, tetrahedrite, galena, and native gold (Zhang et al., 2020). At Huangjindong, gold mainly occurs within arsenopyrite or pyrite with gold concentrations of several hundreds of parts per million in pyrite (Zhang et al., 2020). The gold-rich pyrites are synmineralization minerals and formed at temperature of 200–350 °C (see the Supplemental Material1; Li et al., 2011) above the brittle-ductile transition temperature of 200 °C defined for pyrite (Barrie et al., 2009).A pyrite grain from a slate-hosted aggregate was analyzed by electron backscattered diffraction (EBSD) using a TESCAN Clara scanning electron microscope (SEM) equipped with an Oxford Instruments Symmetry EBSD detector. We selected an ∼2° low-angle boundary within the pyrite for nanoscale secondary ion mass spectrometry (NanoSIMS) analyses using a CAMECA NanoSIMS 50L. A TESCAN Lyra3 Ga+ focused ion beam SEM (FIB-SEM) was used to prepare atom probe needle-shaped specimens following the Pt button targeting approach (Rickard et al., 2020). Atom probe tomography (APT) specimens were analyzed with the CAMECA LEAP 4000X HR Geoscience Atom Probe in the John de Laeter Centre at Curtin University (Perth, Australia). Details of the approach for geological materials are given elsewhere (Reddy et al., 2020). Additional technical information is provided in the Supplemental Material.The pyrite is a single large grain (400 × 800 μm; Fig. 2) with a few micrometer-sized inclusions of arsenopyrite. The EBSD data revealed lattice distortion within the grain with a maximum distortion of ∼10°. Internally, this distortion is manifest by subtle lattice orientation variations (<1°) and the presence of a few discrete low-angle boundaries with ∼2° disorientation (Fig. 2). The EBSD data indicate that many of the boundaries are consistent with operation of the {100} <010>slip system, which is common in pyrite (Fig. 2). However, one boundary has misorientation axes close to <110>, indicating the likely dominance of {110} <010> slip, associated with a <110>dislocation line (Fig. 2E). This slip system has been previously identified from EBSD analyses of deformed pyrite (Barrie et al., 2008). This boundary showed no evidence of microfractures, indicating the coherent nature of the microstructure.NanoSIMS data showed that the As distribution at the microscale is heterogeneous with two domains marked by oscillatory zoning at a high angle to one another (Fig. 2D). One of these domains is enriched in gold, whereas the second domain is gold-poor. The gold-rich domain represents the majority of the gold budget in this weakly deformed crystal. Isolated areas enriched in gold are spatially linked with crosscutting microfractures and/or As-rich domains, including the boundary targeted by EBSD data. This boundary is enriched in gold and cuts across all domains (Fig. 2C). APT targeted the low-angle boundary in the gold-rich region of the pyrite.The nanoscale characterization of the low-angle boundary by APT revealed that the boundary plane is oriented oblique to the specimen axis and composed of parallel, trace-element–rich linear features spaced 10–15 nm (Fig. 3; Fig. S2). The linear features are subhorizontal within the plane of the boundary and are decorated with Ni, Cu, As, Pb, Sb, Bi, and Au (Table 1). The total trace-element concentration in the dislocations reaches ∼4.5 at% (atomic percent), compared to 1.3 at% in the bulk of the APT specimen. The trace-element enrichment is compensated by a decrease in Fe (∼2.8 at% decrease) and S (∼0.4 at% decrease). The gold concentration in the dislocations is 253 ± 26 ppma (1σ), but it is below the detection limit outside of the low-angle boundary. When viewed in three dimensions, the gold atoms do not form large or dense clusters, and gold is unlikely to form discrete nanoparticles (Fougerouse et al., 2016). Concentration profiles generated normal to the boundary and through single dislocations revealed that the As concentration is enriched in the dislocation (from ∼1.3 to ∼2 at%) and depleted in its close vicinity (from ∼1.3 to ∼1 at%; Fig. 3) compared to the bulk composition. The depleted zones extend 10–15 nm and are confined to either one side of the boundary or the other, exclusively (Fig. 3). Outside the dislocation, other trace elements are below detection limits in the concentration profiles.The Au and As oscillatory texture observed on the NanoSIMS images is common in sulfides, and gold is typically hosted in solid solution or as nanoparticles within these domains (Reich et al., 2005; Fougerouse et al., 2016; Gopon et al., 2019; Wu et al., 2019). The dominant mechanism to produced oscillatory zoning is generally accepted to be the diffusion-limited self-organization of ions at the crystal-fluid interface, which can produce nanoscale domains during crystal growth (Putnis et al., 1992; Wu et al., 2019). The origin of spurious gold along microfractures is unclear and may be real or an analysis artifact due to topographical effects (Fig. 2).Comparison between the geometry of the nanoscale linear features observed in the plane of the low-angle boundary and the EBSD data from this particular boundary shows that these linear features are most consistent with <110>dislocations (Fig. 2). The linear features are also consistent with dislocations imaged by APT in other minerals (Piazolo et al., 2016; Kirkland et al., 2018; Fougerouse et al., 2019; Schipper et al., 2020). Trace-element enrichment in the dislocation is up to 3.2 at% increase, including Ni, Cu, As, Pb, Sb, Bi, and Au (Table 1). It is unclear whether the trace elements hosted in the dislocation are substituted on Fe sites, or if they have precipitated as a separate phase along the dislocation similar to Fe-As-Sb-Pb-Ni-Au-S nanoparticles observed in pyrite (Deditius et al., 2011).The absence of microfracturing along the low-angle boundary and the coherent nature of the boundary as observed by the dislocation's orientation using APT and correlative techniques favor a diffusion-driven trace-element redistribution model rather than a fluid-mediated process. Three diffusion models are commonly proposed, including solid-state (volume) diffusion, short-circuit pathways diffusion, and defect-impurity pair diffusion (Mehrer, 2007). The solid-state diffusion of an element is only considered efficient at high temperatures and is unlikely to have been significant at the temperature experienced at the Huangjindong deposit (200–350 °C; Mehrer, 2007; Li et al., 2011).Our data reveal that the As concentration is depleted by ∼0.3 at% in a 10–15-nm-wide zone on one side or the other of the dislocations (Fig. 3). During crystal-plastic deformation, low-angle boundaries form by the rearrangement of dislocations into a plane with dislocations migrating from both sides of the boundary (Hull and Bacon, 2001). Migrating dislocations have the capability to capture impurities (Cottrell and Bilby, 1949). The As depletion zone in close proximity to the dislocation may represent the capture zone of the dislocation (Dubosq et al., 2019), with dislocations originating from both sides of the boundary. This capture zone may only be transient in the eventuality that As is reincorporated into the crystal structure during dislocation migration, as recently proposed for Ca during twining in monazite (Fougerouse et al., 2021). The As distribution is therefore consistent with the defect-impurity pair model (Mehrer, 2007). Gold and other trace elements were not detected above the detection limit in the concentration profiles, and their behavior during deformation cannot be directly evaluated. However, it is well recognized that As and Au have a coupled behavior in pyrite (Reich et al., 2005), and it is reasonable to assume that gold was captured by the dislocations during their migration following the defect-impurity pair diffusion model responsible for As mobility.Alternatively, the NanoSIMS data reveal that the low-angle boundary is crosscut by microfractures, which could have been the source of gold diffusing along the low-angle boundary following the high-diffusivity pathway model. However, the presence of an efficient chemical gradient that would drive diffusion in the pyrite studied is questionable due to only minor compositional differences between the gold-rich and gold-poor domains (Manning and Bruner, 1968). Still, the high-diffusivity pathway model cannot be discounted to account for gold along dislocations.Regardless of the mechanism responsible for gold enrichment in dislocations, such crystallographic locations represent a new type of gold habit in pyrite related to defects that was previously “invisible” to other analytical techniques.In pyrite geochemical studies, infrequent anomalously high counts in time-resolved output graphs from laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) are commonly attributed to the presence of discrete mineral inclusions (Gregory et al., 2015). Our study, however, shows that anomalous element concentrations can also be directly related to deformation microstructures.The nature of the gold-bearing phase along the dislocation, i.e., pyrite with a high trace-element composition or a separate phase, remains unresolved from our results. Although the former scenario is the classic view of decorated dislocations in deformed minerals, the latter would represent a previously unrecognized phenomenon in the earth sciences. Such structures, labeled linear complexions, have been described in the materials science literature (Kuzmina et al., 2015) but have not been recognized in naturally deformed minerals. The effect of linear complexions on mineral grain boundary stability is untested in the literature and is not taken into consideration in quantitative deformation models (Ran et al., 2019). The chemistry of deformation microstructures and the pyrite composition prior to deformation may therefore have an influence on its crystal-plastic behavior under stress; however, these parameters are generally not tested in deformation experiments (Barrie et al., 2009). The gap in knowledge surrounding linear complexions in minerals therefore warrants further investigation, including the confirmation by correlative techniques to test whether a different phase can be present along dislocations in minerals.Most refractory gold ores require oxidation of the sulfides to liberate gold locked as “solid solution” or as very fine inclusions. Studies of strained crystals in other mineral systems indicate enhanced nonlinear dissolution in the presence of crystal defects such as dislocations (Lasaga and Luttge, 2001). Despite the common occurrence of pyrite crystal-plastic deformation textures, even at low temperature (Barrie et al., 2009), no studies have focused on the effects of crystal-plastic deformation microstructures on dissolution processes in sulfide minerals. The predictions from other strained minerals suggest that pyrite dislocations enriched in gold could be more prone to dissolution than bulk crystal, thus reducing energy consumption necessary for extraction. This enhanced dissolution of gold-enriched domains should be investigated as an alternative method of selective or in situ leaching (Heath et al., 2008).In the Huangjindong gold deposit, the majority of the pyrite-hosted gold is contained in the oscillatory zones in the pyrite. However, the budget of gold hosted in deformation microstructures may be dominant over structurally bound gold in highly deformed pyrites. Accurate quantification of the deformation microstructures in invisible gold ores could lead to processing options tailored to highly deformed gold deposits in polymetamorphic terranes commonly hosting orogenic-type gold deposits.The study was supported by the Australian Science and Industry Endowment Fund (grant SIEF RI13–01). Fougerouse acknowledges Australian Research Council funding DE190101307. Lin Yang thanks Liqiang Yang, Qingfei Wang, and Liang Zhang for assistance with sample collection. We are grateful for constructive reviews by Renelle Dubosq, Anna Rogowitz, and an anonymous reviewer, and editorial handling by Dennis Brown and Jerry Dickens.

中文翻译:

变形相关位错中黄铁矿中的一种新型隐形金

与金矿石中硫化物相关的“隐形黄金”开采占全球黄金产量的很大一部分。已提出以硫化物矿物为主体的金在晶格中作为硫化物金合金在结构上结合和/或作为离散的金属纳米粒子出现。对来自造山带金矿床的黄铁矿晶体进行微观结构量化和纳米级地球化学分析相结合,我们表明变形低角度边界中的位错可以富含 Ni、Cu、As、Pb、Sb、Bi 和 Au . 位错中的累积微量元素富集比块状晶体高 3.2 at%。我们建议在位错迁移过程中按照位错-杂质对模型分离痕量元素。纳米级位错中的金代表了一种新型的隐形黄金。新金矿的发现率在全球范围内呈下降趋势,随着贵金属价值的增加,矿石质量下降。含有隐形金的矿石的特点是硫化物矿物中含有微量的金(从百万分之几到千分之几),主要是黄铁矿和毒砂(Cook 和 Chryssoulis,1990 年),现在这是一种常见的资源黄金开采业。在这些矿石中,金要么以合金的形式在晶格中结构化(Cabri 等人,1989 年),要么以离散的金属纳米粒子和微粒形式出现(Palenik 等人,2004 年)。最近,有人假设黄金可以位于低角度边界(Dubosq 等人,2018 年;Wu 等人,2021 年)。然而,沿着变形微观结构、金的性质(天然金或合金金)、其矿物学位置(固溶体、晶体缺陷或开放裂缝)、其来源(晶内/晶间扩散或与二次流体相关)以及金的机制隔离未解决。确定难熔矿石中金的形式和分布在技术上具有挑战性,因为许多定量方法的分析量远大于硫化物中金颗粒的大小(Fougerouse 等,2020)。因此,金和变形微观结构之间的关系仍然是推测性的。对其化学改性过程的表征支持了黄铁矿的广泛使用,以限制矿床的形成并优化其所含金的提取(Cook 等人,2013 年)。因此,硫化物矿物组合的整体化学成分已被充分记录,但黄铁矿化学改性的过程仍存在争议。为了更好地了解金在变形微结构中的结晶位置,我们使用了纳米级表征技术在晶体可塑性较低的含金砷黄铁矿上。结果促进了我们对黄铁矿化学变化过程的理解,并提出了对异常地球化学点分析的替代解释,通常归因于纳米粒子。还概念化了结果​​对选择性提取金的影响。 研究样品采集于位于江南造山带中部的黄金洞造山型金矿床(图 1;Zhang 等,2020) . 江南造山带是在罗迪尼亚超大陆组装过程中扬子与华夏地块碰撞形成的(Li et al., 2008)。样品(D02B3;114.049°N,28.675°E;图 1)是来自东西向矿体(倾角 45-70°S;Zhang 等,2020)的代表性金矿石。样品是矿化板岩,其中含有少量(几厘米)石英脉(图 1)。主要矿石矿物包括黄铁矿和毒砂,少量黄铜矿、四面体、方铅矿和原生金(Zhang et al., 2020)。在黄金洞,金主要存在于毒砂或黄铁矿中,黄铁矿中的金浓度为百万分之数百(Zhang 等,2020)。富金黄铁矿是同矿化矿物,形成温度为 200–350 °C(见补充材料 1;Li 等人,2011 年),高于为黄铁矿定义的 200 °C 脆-韧转变温度(Barrie 等人,2011 年)。 , 2009。使用配备牛津仪器对称 EBSD 检测器的 TESCAN Clara 扫描电子显微镜 (SEM) 通过电子背散射衍射 (EBSD) 分析来自板岩承载的聚集体的黄铁矿颗粒。我们在黄铁矿内选择了一个 ~2° 的低角度边界,用于使用 CAMECA NanoSIMS 50L 进行纳米级二次离子质谱 (NanoSIMS) 分析。使用 TESCAN Lyra3 Ga+ 聚焦离子束 SEM (FIB-SEM) 按照 Pt 按钮靶向方法(Rickard 等人,2020 年)制备原子探针针形样品。使用 CAMECA LEAP 4000X HR 地球科学原子探针在科廷大学(澳大利亚珀斯)的约翰德莱特中心对原子探针断层扫描 (APT) 标本进行分析。其他地方提供了地质材料方法的详细信息(Reddy 等,2020)。补充材料中提供了其他技术信息。黄铁矿是一个单一的大颗粒(400 × 800 μm;图 2),带有几个微米大小的毒砂包裹体。EBSD 数据揭示了晶粒内的晶格畸变,最大畸变约为 10°。在内部,这种扭曲表现为微妙的晶格取向变化(< 1°)和一些离散的低角度边界的存在,大约 2° 迷失方向(图 2)。EBSD 数据表明许多边界与 {100} <010> 滑移系统的运行一致,这在黄铁矿中很常见(图 2)。然而,一个边界具有接近 <110> 的错误取向轴,表明 {110} <010> 滑移可能占主导地位,与 <110> 位错线相关(图 2E)。该滑移系统先前已从变形黄铁矿的 EBSD 分析中识别出来(Barrie 等人,2008 年)。该边界没有显示微裂缝的证据,表明微结构的连贯性。 NanoSIMS 数据显示微尺度的 As 分布是不均匀的,两个域以彼此大角度的振荡分区为标志(图 2D)。这些领域之一富含黄金,而第二个域是贫金的。富金域代表了这种弱变形晶体中的大部分金预算。富含金的孤立区域在空间上与横切微裂缝和/或富含砷的区域相关,包括 EBSD 数据所针对的边界。该边界富含黄金并跨越所有域(图 2C)。APT 以黄铁矿富金区域的低角度边界为目标。 APT 对低角度边界的纳米级表征表明,边界平面倾斜于样品轴,由平行的、富含微量元素的区域组成线性特征间隔 10-15 nm(图 3;图 S2)。线状特征在边界平面内是亚水平的,并用 Ni、Cu、As、Pb、Sb、Bi 和 Au 装饰(表 1)。位错中的总微量元素浓度达到 4.5 原子百分比(原子百分比),而大部分 APT 样品中的总微量元素浓度为 1.3 原子百分比。微量元素的富集通过减少 Fe(减少~2.8at%)和 S(减少~0.4at%)来补偿。位错中的金浓度为 253 ± 26 ppma (1σ),但低于低角度边界外的检测限。从三个维度看,金原子不会形成大的或密集的簇,金不太可能形成离散的纳米粒子(Fougerouse 等,2016)。垂直于边界并通过单个位错生成的浓度分布表明,As 浓度在位错中富集(从 ~1.3 到 ~2at%)并在其附近耗尽(从 ~1.3 到 ~1at%;图 3 ) 与散装组合物相比。耗尽区延伸 10-15 nm,并且仅限于边界的一侧或另一侧(图 3)。在位错之外,其他微量元素在浓度分布中低于检测限。 NanoSIMS 图像上观察到的 Au 和 As 振荡结构在硫化物中很常见,而金通常存在于固溶体中或作为这些域内的纳米粒子(Reich 等人.,2005 年;Fougerouse 等人,2016 年;Gopon 等人,2019 年;Wu 等人,2019 年)。产生振荡分区的主要机制通常被认为是晶体-流体界面处离子的扩散限制自组织,这可以在晶体生长过程中产生纳米级域(Putnis 等人,1992 年;Wu 等人,2019 年) )。沿着微裂缝的假金的起源尚不清楚,可能是真实的,也可能是由于地形效应造成的分析伪影(图 2)。 低角度边界平面内观察到的纳米级线性特征的几何形状与 EBSD 数据的比较从这个特定的边界来看,这些线性特征与 <110> 位错最一致(图 2)。线性特征也与 APT 在其他矿物中成像的位错一致(Piazolo 等人,2016 年;Kirkland 等人,2018 年;Fougerouse 等人,2019 年;Schipper 等人,2020 年)。位错中的微量元素富集增加了 3.2 at%,包括 Ni、Cu、As、Pb、Sb、Bi 和 Au(表 1)。目前尚不清楚位错中的微量元素是否在 Fe 位点上被取代,或者它们是否作为单独的相沿位错沉淀,类似于在黄铁矿中观察到的 Fe-As-Sb-Pb-Ni-Au-S 纳米颗粒(Deditius 等人,2011 年)。沿低角度边界不存在微裂缝使用 APT 和相关技术通过位错方向观察到的边界的连贯性有利于扩散驱动的微量元素再分配模型,而不是流体介导的过程。通常提出了三种扩散模型,包括固态(体积)扩散、短路路径扩散和缺陷-杂质对扩散(Mehrer,2007)。元素的固态扩散仅在高温下被认为是有效的,而在黄金洞矿床(200-350 °C;Mehrer,2007;Li 等,2011)所经历的温度下不太可能显着。我们的数据显示,在位错的一侧或另一侧的 10-15 nm 宽区域中,As 浓度消耗了约 0.3 at%(图 3)。在晶体塑性变形过程中,位错重新排列成一个平面,位错从边界两侧迁移,从而形成低角度边界(Hull 和 Bacon,2001 年)。迁移位错具有捕获杂质的能力(Cottrell 和 Bilby,1949)。位错附近的 As 耗尽区可能代表位错的俘获区 (Dubosq et al., 2019),位错起源于边界的两侧。在位错迁移过程中 As 重新结合到晶体结构中的情况下,该捕获区可能只是暂时的,正如最近提出的在独居石中缠绕过程中的 Ca 一样(Fougerouse 等人,2021 年)。因此 As 分布与缺陷-杂质对模型一致 (Mehrer, 2007)。金和其他微量元素在浓度分布中未检测到高于检测限,并且无法直接评估它们在变形过程中的行为。然而,众所周知,As 和 Au 在黄铁矿中具有耦合行为(Reich 等人,2005 年),并且可以合理地假设金在其迁移过程中被位错捕获,遵循缺陷 - 杂质对扩散模型负责或者,NanoSIMS 数据显示低角度边界被微裂缝横切,这可能是金按照高扩散率路径模型沿着低角度边界扩散的来源。然而,由于富金域和贫金域之间的成分差异很小,因此在所研究的黄铁矿中驱动扩散的有效化学梯度的存在是有问题的(Manning 和 Bruner,1968 年)。尽管如此,高扩散率路径模型不能被忽视以解释沿位错的金。无论导致位错中金富集的机制如何,这种晶体学位置代表了黄铁矿中与以前“不可见”缺陷相关的新型金习性在黄铁矿地球化学研究中,激光烧蚀电感耦合等离子体质谱 (LA-ICP-MS) 的时间分辨输出图中偶尔出现的异常高计数通常归因于离散矿物包裹体的存在(Gregory 等等,2015)。然而,我们的研究,表明异常元素浓度也可能与变形微观结构直接相关。沿位错的含金相的性质,即具有高痕量元素成分的黄铁矿或单独的相,我们的结果仍未解决。尽管前一种情况是变形矿物中装饰位错的经典观点,但后一种情况将代表地球科学中以前未被认识的现象。材料科学文献 (Kuzmina et al., 2015) 中描述了这种标记为线性肤色的结构,但尚未在自然变形的矿物中得到认可。线性肤色对矿物晶界稳定性的影响在文献中未经测试,在定量变形模型中未考虑在内(Ran 等人,2019 年)。因此,变形前的变形微观结构的化学性质和黄铁矿成分可能对其在应力下的晶体塑性行为产生影响;然而,这些参数通常不会在变形实验中进行测试(Barrie 等,2009)。因此,围绕矿物中线性配相的知识差距值得进一步研究,包括通过相关技术进行确认,以测试是否可以沿着矿物中的位错存在不同的相。大多数难熔金矿石需要硫化物氧化以释放锁定为“固体”的金溶液”或非常细小的内含物。对其他矿物系统中应变晶体的研究表明,在存在晶体缺陷(如位错)的情况下非线性溶解增强(Lasaga 和 Luttge,2001 年)。尽管黄铁矿晶体-塑性变形结构普遍存在,即使在低温下(Barrie 等,2009),也没有研究关注晶体-塑性变形微观结构对硫化矿物溶解过程的影响。来自其他应变矿物的预测表明,富含金的黄铁矿位错可能比块状晶体更容易溶解,从而降低提取所需的能源消耗。这种富金区域溶解的增强应作为选择性浸出或原位浸出的替代方法进行研究(Heath 等,2008 年)。在黄金洞金矿床中,大部分黄铁矿包裹的金包含在振荡带中在黄铁矿中。然而,变形微结构中的金预算可能比高度变形黄铁矿中结构结合的金占主导地位。对隐形金矿石中变形微观结构的准确量化可能会导致针对通常拥有造山型金矿床的多变质地体中高度变形的金矿床量身定制的加工方案。该研究得到了澳大利亚科学和工业捐赠基金的支持(资助 SIEF RI13-01 )。Fougerouse 承认澳大利亚研究委员会资助 DE190101307。Lin Yang 感谢 Liqiang Yang、Qingfei Wang 和 Liang Zhang 在样本收集方面提供的帮助。我们感谢 Renelle Dubosq、Anna Rogowitz 和匿名审稿人的建设性评论,以及 Dennis Brown 和 Jerry Dickens 的编辑处理。对隐形金矿石中变形微观结构的准确量化可能会导致针对通常拥有造山型金矿床的多变质地体中高度变形的金矿床量身定制的加工方案。该研究得到了澳大利亚科学和工业捐赠基金的支持(资助 SIEF RI13-01 )。Fougerouse 承认澳大利亚研究委员会资助 DE190101307。Lin Yang 感谢 Liqiang Yang、Qingfei Wang 和 Liang Zhang 在样本收集方面提供的帮助。我们感谢 Renelle Dubosq、Anna Rogowitz 和匿名审稿人的建设性评论,以及 Dennis Brown 和 Jerry Dickens 的编辑处理。对隐形金矿石中变形微观结构的准确量化可能会导致针对通常拥有造山型金矿床的多变质地体中高度变形的金矿床量身定制的加工方案。该研究得到了澳大利亚科学和工业捐赠基金的支持(资助 SIEF RI13-01 )。Fougerouse 承认澳大利亚研究委员会资助 DE190101307。Lin Yang 感谢 Liqiang Yang、Qingfei Wang 和 Liang Zhang 在样本收集方面提供的帮助。我们感谢 Renelle Dubosq、Anna Rogowitz 和匿名审稿人的建设性评论,以及 Dennis Brown 和 Jerry Dickens 的编辑处理。该研究得到了澳大利亚科学和工业捐赠基金的支持(资助 SIEF RI13-01)。Fougerouse 承认澳大利亚研究委员会资助 DE190101307。Lin Yang 感谢 Liqiang Yang、Qingfei Wang 和 Liang Zhang 在样本收集方面提供的帮助。我们感谢 Renelle Dubosq、Anna Rogowitz 和匿名审稿人的建设性评论,以及 Dennis Brown 和 Jerry Dickens 的编辑处理。该研究得到了澳大利亚科学和工业捐赠基金的支持(资助 SIEF RI13-01)。Fougerouse 承认澳大利亚研究委员会资助 DE190101307。Lin Yang 感谢 Liqiang Yang、Qingfei Wang 和 Liang Zhang 在样本收集方面提供的帮助。我们感谢 Renelle Dubosq、Anna Rogowitz 和匿名审稿人的建设性评论,以及 Dennis Brown 和 Jerry Dickens 的编辑处理。
更新日期:2021-10-06
down
wechat
bug