当前位置: X-MOL 学术ACS Appl. Mater. Interfaces › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
One-Step Synthesis of Microdome Patterns for Microstructured Pressure Sensors with Ultra-High Sensing Performance
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2021-10-01 , DOI: 10.1021/acsami.1c12241
Zhen-Hua Tang 1 , Shan-Shan Xue 1 , Yuan-Qing Li 1 , Zi-Cai Zhu 2 , Pei Huang 1 , Shao-Yun Fu 1
Affiliation  

Pressure sensors usually suffer from a trade-off between sensitivity and the linear sensing range, which may be improved by manipulating the geometric microstructure of active sensing materials via the molding strategy, standard photolithography technique, and so on. However, these conventional microengineering techniques require specialized equipment, which are extremely complicated, high-cost, and time-consuming to manufacture. Herein, a mold-free, scalable, low-cost, and environment-friendly one-step thermofoaming strategy is proposed to fabricate surface morphology-tunable microdome-patterned composites (MPCs). The microstructured pressure sensor is then prepared by coating the MPCs with highly conductive graphene. Remarkably, the as-prepared pressure sensor presents a better overall sensing performance compared to the previous pressure sensors prepared using complicated microengineering methods. Moreover, an electromechanical response model and finite-element analysis are used to clarify the sensing mechanisms of the present microstructured pressure sensor. Furthermore, several successful application demonstrations are conducted under various pressure levels. Considering the advantages of the one-step fabrication strategy over conventional surface microengineering techniques and the high performance of the microstructured pressure sensor, the present pressure sensor has promising potential applications in health monitoring, tactile sensation, wearable devices, etc.

中文翻译:

具有超高传感性能的微结构压力传感器微圆顶图案的一步合成

压力传感器通常需要在灵敏度和线性传感范围之间进行权衡,这可以通过成型策略、标准光刻技术等操纵有源传感材料的几何微结构来改善。然而,这些传统的微工程技术需要专门的设备,这些设备极其复杂、成本高且制造耗时。在此,提出了一种无模具、可扩展、低成本且环境友好的一步热发泡策略来制造表面形态可调的微圆顶图案复合材料(MPC)。然后通过用高导电石墨烯涂覆 MPC 来制备微结构压力传感器。值得注意的是,与以前使用复杂微工程方法制备的压力传感器相比,所制备的压力传感器具有更好的整体传感性能。此外,机电响应模型和有限元分析用于阐明本微结构压力传感器的传感机制。此外,在不同的压力水平下进行了几次成功的应用演示。考虑到一步制造策略相对于传统表面微工程技术的优势以及微结构压力传感器的高性能,本压力传感器在健康监测、触觉、可穿戴设备等方面具有广阔的应用前景。机电响应模型和有限元分析用于阐明本微结构压力传感器的传感机制。此外,在不同的压力水平下进行了几次成功的应用演示。考虑到一步制造策略相对于传统表面微工程技术的优势以及微结构压力传感器的高性能,本压力传感器在健康监测、触觉、可穿戴设备等方面具有广阔的应用前景。机电响应模型和有限元分析用于阐明本微结构压力传感器的传感机制。此外,在不同的压力水平下进行了几次成功的应用演示。考虑到一步制造策略相对于传统表面微工程技术的优势以及微结构压力传感器的高性能,本压力传感器在健康监测、触觉、可穿戴设备等方面具有广阔的应用前景。
更新日期:2021-10-13
down
wechat
bug