当前位置: X-MOL 学术Ultrasonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Time and frequency domain deconvolution for cross-sectional cultured cell observation using an acoustic impedance microscope
Ultrasonics ( IF 3.8 ) Pub Date : 2021-09-30 , DOI: 10.1016/j.ultras.2021.106601
Edo Bagus Prastika 1 , Taichi Shintani 1 , Tomohiro Kawashima 1 , Yoshinobu Murakami 1 , Naohiro Hozumi 1 , Thomas Tiong Kwong Soon 2 , Sachiko Yoshida 2 , Ryo Nagaoka 3 , Kazuto Kobayashi 4
Affiliation  

Herein, we propose a method to estimate the reflection coefficient of the ultrasonic wave transmitted onto an object and to display this with acoustic impedance distribution. The observation targets were glial cells, which have a rigid cytoskeleton and spread out well on a culture substrate. A reflection coefficient derived only from the cells was then obtained using a deconvolution process. In the conventional method, the deconvolution process that was performed only in the frequency domain would cause an error in the reconstructed signal, and it formed an artifact when the result was converted into the acoustic impedance image. To solve this problem, two types of deconvolution techniques were applied in either the full frequency or time–frequency domain. The results of both methods were then compared. Since the characteristic acoustic impedance is a physical property substantially equivalent to the bulk modulus, it can be considered that the internal elastic parameter is thus estimated. An analysis of the nucleus based on its position in the acoustic impedance image was then performed. The results indicated that the proposed time–frequency domain deconvolution method is able to maintain the structure of the cell, while the cell itself is free from unwanted artifacts. The nucleus was also estimated to be located toward the center of the cell, with lower acoustic impedance value than the cytoskeleton. The results of this study could contribute to establishing a method for monitoring the internal condition of cultured cells in regenerative medicine and drug discovery.



中文翻译:

使用声阻抗显微镜进行横截面培养细胞观察的时域和频域解卷积

在这里,我们提出了一种方法来估计发射到物体上的超声波的反射系数,并用声阻抗分布来显示它。观察目标是神经胶质细胞,其具有刚性的细胞骨架并在培养基质上很好地展开。然后使用去卷积过程获得仅源自细胞的反射系数。在传统方法中,仅在频域进行的反卷积过程会导致重构信号出现误差,并且在将结果转换为声阻抗图像时会形成伪影。为了解决这个问题,在全频域或时频域中应用了两种类型的去卷积技术。然后比较两种方法的结果。由于特征声阻抗是与体积模量基本等效的物理性质,因此可以认为内部弹性参数是这样估计的。然后根据核在声阻抗图像中的位置对核进行分析。结果表明,所提出的时频域解卷积方法能够保持细胞的结构,而细胞本身没有不需要的伪影。细胞核也被估计位于细胞中心,声阻抗值低于细胞骨架。这项研究的结果有助于建立一种在再生医学和药物发现中监测培养细胞内部状况的方法。可以认为这样估计了内弹性参数。然后根据核在声阻抗图像中的位置对核进行分析。结果表明,所提出的时频域解卷积方法能够保持细胞的结构,而细胞本身没有不需要的伪影。细胞核也被估计位于细胞中心,声阻抗值低于细胞骨架。这项研究的结果有助于建立一种在再生医学和药物发现中监测培养细胞内部状况的方法。可以认为这样估计了内弹性参数。然后根据核在声阻抗图像中的位置对核进行分析。结果表明,所提出的时频域解卷积方法能够保持细胞的结构,而细胞本身没有不需要的伪影。细胞核也被估计位于细胞中心,声阻抗值低于细胞骨架。这项研究的结果有助于建立一种在再生医学和药物发现中监测培养细胞内部状况的方法。结果表明,所提出的时频域解卷积方法能够保持细胞的结构,而细胞本身没有不需要的伪影。细胞核也被估计位于细胞中心,声阻抗值低于细胞骨架。这项研究的结果有助于建立一种在再生医学和药物发现中监测培养细胞内部状况的方法。结果表明,所提出的时频域解卷积方法能够保持细胞的结构,而细胞本身没有不需要的伪影。细胞核也被估计位于细胞中心,声阻抗值低于细胞骨架。这项研究的结果有助于建立一种在再生医学和药物发现中监测培养细胞内部状况的方法。

更新日期:2021-10-06
down
wechat
bug